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Introduction

As we move into the twenty-first century, we are ever more aware that
we are connected to people in other cultures throughout the world.
Through expanding communication networks and spreading markets,
more experiences of ours and theirs are becoming similar. But, at the
same time as we move toward greater likeness, we realize that there is
much that we do not and did not share. In particular, we have come to
understand that different cultures have different traditions and different
histories. Even the same or similar happenings had different effects and
different meanings when integrated into different cultural settings and
interpreted through different cultural lenses.
This is just as true for mathematical ideas as it is for other aspects of

human endeavors. Different cultures emphasized different ideas or
expressed similar ideas in different ways. What is more, because
cultures assort or categorize things differently, the context of the
ideas within the cultures frequently differ.
Among those who study and write about the history of mathematics,

there has been growing understanding that what is generally referred to
as modern mathematics (that is, the mathematics transmitted through
Western-style education) is, itself, built upon contributions from people
in many cultures. There is now greater acknowledgment of, in parti-
cular, mathematical developments in China, India, and the Arabic
world. In addition, there is increased recognition of the work of indi-
viduals from an expanding diversity of backgrounds.
There are, however, still other instances of ideas that did not feed

into or effect this main mathematical stream. This is especially true of
occurrences in traditional or small-scale cultures. In most cases, these
cultures and their ideas were unknown beyond their own boundaries, or
misunderstood when first encountered by outsiders. During the past 80
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years, there have been vast changes in theories, knowledge, and under-
standing about culture, about language, and about cognitive processes.
Yet, only recently have these newer understandings started to impinge
upon histories of mathematics to modify the earlier, long-held and
widespread, but, nonetheless, erroneous depictions of traditional
peoples.
First and foremost, we now know that there is no single, universal

path—following set stages—that cultures or mathematical ideas
follow. With the exception of specifically demonstrated transmissions
of ideas from one culture to another, it is assumed that each culture
developed in its own way. When we introduce the varied and often
quite substantial mathematical ideas of traditional peoples, we are not
discussing some early phase in humankind’s past. We are, instead,
adding pieces to a global mosaic. In terms of our picture of global
history, we are supplying complexity and texture by incorporating
expressions from different peoples, at different times, and in different
places. We are, in short, enlarging our understanding of the variety of
human expressions and human usages associated with the same basic
ideas.
Our focus, then, is elaborating the mathematical ideas of people in

these lesser known cultures, that is, the ideas of peoples in traditional or
small-scale cultures. In an earlier work, some of the peoples whose
mathematical ideas I introduced were the Inuit, Iroquois, and Navajo of
North America; the Incas of South America; the Caroline Islanders,
Malekula, Maori, and Warlpiri of Oceania; and the Bushoong, Kpelle,
and Tshokwe of Africa. Here we continue to enlarge our global vision
by discussing, among others, ideas of the Maya of South America; the
Marshall Islanders, Tongans, and Trobriand Islanders of Oceania; the
Borano and Malagasy of Africa; the Basque of Europe; the Tamil of
southern India; and the Balinese and Kodi of Indonesia. Each of these
instances adds to our knowledge, but at the same time, makes us all the
more aware that it is only a beginning: It is estimated that about 5000–
6000 different cultures have existed during just the past 500 years. We
will never know about the ideas of those that no longer exist, but there
are several hundred that we can know more about.
There is no single, simple way to define a culture. In an attempt to

capture all of its nuances, there are many different definitions. By and
large, however, the definitions have in common that a culture is a group
that continues through time, sharing and being held together by
language, traditions, and mores, as well as ways of conceptualizing,
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organizing, and giving meaning to their physical and social worlds.
Often it is associated with a particular place. To say that a culture
continues through time is not to say that it is static. All cultures are
ever-changing. What varies, however, is the pace of change. In general,
traditional or small-scale cultures, as contrasted with, say, post-indus-
trial societies, are more homogeneous and slower to change. Today,
throughout the world, there is an overlay of a few dominant cultures,
and no culture has remained unmodified by its contacts with others.
Nevertheless, traditional cultures still exist, even if sometimes along-
side of, or even within a dominant culture.
Where traditions changed slowly or persisted for a long time, we

speak about them using the conventional idiom of ‘‘the ethnographic
present,’’ that is, we describe them at some unspecified time when the
traditional culture held sway. However, we will, where we can, note the
time depth of the tradition described, and cite some of the ways it has
been modified or adapted, while, nevertheless, persisting to varying
degrees in its underlying coherence. We will even discuss how a tradi-
tion that has been ongoing for hundreds of years both continues in its
familiar form and yet becomes involved with a newly developed tech-
nology that has been introduced.
Although most of us have a notion of what mathematics is, the term

has no clear and agreed upon definition. Expansion of the term gener-
ally relies on citing examples from one’s own experience. To incorpo-
rate the ideas of others, it is necessary to clarify our definition and to
move beyond the contents of the familiar settings of mathematics, that
is, to look beyond the classroom and beyond the work of professional
mathematicians. We will, therefore, speak instead of the more inclusive
mathematical ideas. And, we will, first of all, specify what we take
these to encompass: Among mathematical ideas, we include those ideas
involving number, logic, spatial configuration, and, more significant,
the combination or organization of these into systems and structures.
Most cultures do not set mathematics apart as a distinct, explicit

category. But with or without that category, mathematical ideas, none-
theless, do exist. The ideas, however, are more often to be found else-
where in the culture, namely, integrated into the contexts in which they
arise, as part of the complex of ideas that surround them. The contexts
for the ideas might be, for example, what we categorize as navigation,
calendrics, divination, religion, social relations, or decoration. These,
in fact, are some of the contexts for mathematical ideas that we will
elaborate here. As we discuss the ideas, we also discuss their cultural
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embedding. Were we to present the ideas divorced from their contexts,
they might look more like our own modern mathematics. This
approach, however, would distort a major difference—most practi-
tioners of modern mathematics value their ideas because they believe
them to be context-free; others value their ideas as inseparable from the
cultural milieu that gives them meaning.
Just as most cultures do not have a category called mathematics, they

do not group mathematical ideas together as we do—that is, their ideas
are not neatly partitionable into, say, algebra, geometry, model build-
ing, or logic. The extended examples that we discuss will determine
which ideas are presented and the way they are grouped together.
In the chapters that follow, although we discuss the mathematical

ideas of others, we do, nevertheless, view them from within our own
cultural and mathematical frameworks. For understanding, we call
upon similar ideas and concepts we have learned, and we use the
vocabulary we share with the reader to convey our understanding. As
outsiders to these cultures, we cannot do otherwise. It may well be that
other cultures have some ideas too dissimilar from our own for us to
detect, just as we have some ideas they do not have. What is crucial,
however, is that we not impute to others ideas and concerns that are our
own, and that we not be constrained by prejudgments. The process of
viewing the ideas of others may lead us to think in more detail about
some of our own ideas. In particular, it may lead us to identify some of
our unstated assumptions. We may, perhaps, find that some ideas we
have taken to be universal are not, while other ideas we believed to be
exclusively our own, are, in fact, shared by others.
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CHA P T E R 1

The Logic of Divination

1 Divination, in one form or another, has at some time been prac-
ticed in almost every culture. In general, it is a decision-making

process, utilizing, as part of the process, a randomizing mechanism.
The decisions coming out of the process sometimes involve the deter-
mination of the cause of an event or, more often, how, when, or whether
to carry out some future action. In different cultures, and at different
times, the randomizing mechanisms have varied considerably, invol-
ving animals or animal parts, lots or dice, sticks, or whatever can
generate a set of different outcomes. The outcomes, or results derived
from them, are then read and interpreted by the client or the diviner.
The divining practices and their cultural embedding differ widely. They
are roughly of two types. In one type, the emotional or spiritual state of
the diviner during divination is of major importance; he (or she)
becomes imbued with a heightened ability or power to comprehend
the meaning of the result. The other type of divination, the type that
interests us here, involves forms of divination that are shared, systema-
tic, and structured approaches to knowledge. They depend not on the
state of the diviner but on his careful adherence to procedures and on
his reservoir of wisdom. These latter divination systems are, in fact,
considered by some scholars to be sciences.
When we talk about using a randomizing mechanism, we mean, for

example, spinning a roulette wheel, throwing dice, picking balls out of
a jar, or flipping coins. We do not include, say, throwing a dart at a
dartboard or spelling a word. The outcomes of the dart throw can
change with skill and practice, and spelling depends on knowledge.
In general, we are discussing randomizing mechanisms that have a
fixed set of discrete outcomes, such as red, blue, and green; the integers
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1–1000; or heads and tails. Even though we know the outcomes that
may result, it is no simple matter for any of us to explain why, on a
particular trial, one result occurred and not another. We might say that
it was due to chance or luck or some such thing, but that would still
need further clarification. There are occasions, however, when the
involvement of outside forces is acknowledged. When, in the Old
Testament, for example, Jonah is thrown overboard as the result of a
casting of lots, it is believed that the outcome was guided or dictated by
supernatural forces. It is not simply that Jonah was unlucky.
Belief in divination does not imply believing that all occurrences are

controlled by extranormal forces; it is only believing that the outcomes
of particular procedures, carried out under particular circumstances,
and usually with particular materials, are expressions of specific
deities, witches, or other supernatural forces. In classical Greece, for
example, a form of divination called astragalomancy was practiced, in
which the numbers 1, 3, 4, 6 were associated with the four sides of an
astragalus (an ankle bone of a hoofed animal). The sides that faced
upward when a set of five astragali was thrown were identified with a
set of numbers, a god, and a prophecy. Similarly, among the Romans,
four astragali were used. Because it was highly unlikely (using prob-
ability theory, we would calculate 1 chance in 10,000), the appearance
of sides valued at 6, 6, 6, 6 was ‘‘The Throw of the Vulture’’ and
foretold dire happenings. The throwing of these ankle bones has been
linked to games of chance, the subsequent use of gaming dice, and even
implicit and then explicit ideas about probability. The difference,
however, is that classical Greek and Roman astragalomancy were
parts of religious belief systems and were not games.
Although the procedures used in different forms of divination may

begin with simple randomizing mechanisms, the outcomes can then be
built upon in many and varied ways. We will discuss a few of these
forms of divination, focusing in particular on the mathematical ideas
that these procedures involve. We begin by looking briefly at knot
divination in the Caroline Islands of the North Pacific, and then
move to the practice of Ifa by the Yoruba, who live in and around
Nigeria in West Africa. However, we will concentrate most fully on
sikidy, the divination system used by the people who live on the large
island of Madagascar.

2 The Caroline Islands are an archipelago that extends east to west
for about 2400 km between the 5th and 10th parallels of north
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latitude. Between 1947 and 1986, the islands were part of the Trust
Territory of the Pacific Islands administered by the United States. Now,
they are the Federated States of Micronesia and Paulau. In all, the
population is about 122,000 (see Map 1.1). Although the islands are
spread out and separated by large distances across open waters, the
people on the islands remain in close communication with each
other. It is not surprising, therefore, that they share much in the way
of culture, including a system of divination. There are variations from
island to island, but there is substantial similarity. One myth about the
origin of their divination system tells of a god, Supunemen, who
brought to earth 16 destinies in the form of spirits. He had them
build a sailing canoe in which they sailed from island to island teaching
knot divination. When that job was accomplished, they went back to
heaven never to return.
Each of the destiny spirits has a name, but what is more, each is

associated with a pair of numbers. The first number in the pair can be 1,
2, 3, or 4, and the second number can be 1, 2, 3, or 4. Here, we represent
the pairs as (a, b), where a ¼ 1, 2, 3, 4 and b ¼ 1, 2, 3, 4. The order in
which the numbers appear is significant, that is (1, 3) is a different spirit
than the pair (3, 1). In fact, in one version of the divination origin myth,
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Map 1.1 The Caroline Islands in the North Pacific Ocean.
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where the spirits are both men and women, the men are the pairs in
which a is less than b,while for the women, a is more than b. Corre-
sponding pairs are spouses. Thus, for example, (1, 4) is the husband of
(4, 1), (2, 3) is the husband of (3, 2), and (2, 4) is the husband of (4, 2).
[As for the pairs in which in which a equals b, (4, 4) is the chief, and (2,
2) is his wife, while (3, 3) is their son, and (1, 1) is a young bachelor.]
The teachings of the spirits are known to the diviners, who are sacred

and honored people. Not only are the diviners consulted on most impor-
tant matters, including fishing, house building, traveling, naming of
children, illness, and love, but they must carefully pass on their knowl-
edge by teaching future diviners.
To begin a divination session, the diviner splits the young leaves of

coconut trees into strips, and then they or the client makes a random
number of knots in each strip. The knotted strips are placed in a pile
from which four strips are randomly selected. The first of the strips is
held between the thumb and forefinger, the second between the fore-
finger and middle finger, and the third and fourth between the next
fingers, respectively. Finally, the knots on each strip are counted,
returning, however, to a count of 1 each time a count of 4 is exceeded.
That, in mathematics, can be described as counting modulo 4. If, for
example, the strip had 9 knots, the final count would equal 1. [We
would write it as 9 ¼ 1(mod 4).] A second strip of, say, 15 knots has a
final count of 3, that is 15 ¼ 3(mod 4). Because beyond 4 the numbers
recycle, the only results that can occur on each of these counts is 1, 2,
3, or 4. Thus, from these first two strips, a pair of counts (a, b) is
obtained where a ¼ 1, 2, 3, or 4 and b ¼ 1, 2, 3, or 4. Each of the four
possible values for a can be paired with each of the four values for b,
and so the number of different pairs possible is the product 4 £ 4 ¼
16. Hence, each pair (a, b) identifies one of the 16 destiny spirits.
Before any interpretation can be given, knots on the strips held

between the next fingers are counted, also modulo 4. Again, the result
is a pair of counts, (a 0, b 0), identifying a second destiny spirit. The
association and juxtaposition of the two destiny spirits are the basis
for the diviner’s interpretation. The coupling gives rise to a particular
phrase or set of key words. Here, too, the order in which the results
were obtained is significant. That is, just as (1, 3) is a different spirit
than (3, 1), the pair of pairs [(1, 3), (2, 3)] elicits a different phrase
than does [(2, 3), (1, 3)]. With 16 destiny spirits possible for the first
pair, and 16 possible from the second pair, there are, in all, 16 £ 16 ¼
256 different couplings that can result. The key words and phrases
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determined by the particular outcome are applied to the case at hand,
taking into consideration the question, the questioner, and the
surrounding circumstances. In all cases, the purpose of the divination
is to gain information and understanding about ongoing or future
happenings.
On one of the islands, in order to learn something about events that

are in the remote future, a simpler divining scheme is used. The simpli-
fication reduces the number of possible outcomes from 256 to 16. As
before, two pairs of count pairs, (a, b) and (a 0, b 0), are formed. Before
interpreting them, however, they are merged by the diviner into one
pair (a 00, b 00) as follows:

a 00¼ ða1bÞ mod 4; b 00¼ ða 01b 0Þ mod 4:

In this method, the pairings in our example above [(1, 3), (2, 3)]
would become the single pair (4, 1). Because the addition is modulo 4,
once again the only possible values resulting for a 00 and for b 00 are 1, 2,
3, or 4, and so the final pair identifies one of the destiny spirits. In this
simplified version, the scope of interpretation is limited to whether the
far distant events will have favorable or unfavorable consequences.

3 Curiously, the numbers 16 and 256 are also prominent in Ifa divi-
nation among the Yoruba. However, the mode of divination and its

goals, meaning, and surrounding belief system are decidedly different,
as are the people, their environment, and their religion. Ifa is an espe-
cially significant form of divination because it has spread beyond its
origins among the more than 18 million Yoruba in Nigeria to such
groups as the Benin Edo of the same region, the Fon who established
the Dahomey kingdom in the early 18th century in what is now Benin,
the Ewe of Togo and Ghana, and the people of Cuba and Brazil who are
descendants of Yoruba slaves (see Map 1.2). It has different names in
different places as well as there being some variation in practices.
While we look only at Ifa as it is practiced among the Yoruba of
Nigeria, we recognize its greater spread and popularity.
Central to the beliefs surrounding the divination practice known as

Ifa are: O̧lo̧run, a deity who assigns and controls the destinies of
mankind; Ifa, the God of Divination who interprets and transmits the
wishes of O̧lo̧run; and Eshu, the Trickster/Messenger of O̧lo̧run who
carries the offerings from the people to O̧lo̧run, and who helps those
who make appropriate offerings. The Yoruba deities are not limited to
these; there are perhaps as many as 400 or 500 others.
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The Ifa divination procedure is a shared undertaking of the client and
the diviner. The diviner knows the manipulations to be done and how
they are to be read. He also knows–and this is what elevates him to a
man of wisdom–a considerable number of verses to be said in response
to the different outcomes. The verses contain the values, myths, mores,
traditions, and theology of the Yoruba people. But also, specifically,
each verse can be interpreted as a prediction with an attendant offering.
What is most crucial is that, for each outcome, the diviner presents all
of the verses he knows that are associated with it. The client, however,
is the one who selects from these verses the one appropriate to his
concern. In fact, if the client wishes, the diviner need not even be
told the concern. The more verses a diviner knows for each outcome,
the better the chances of one closely fitting the client’s need. It is said
that for a learner to be approved as a diviner by the senior diviners, he
must know at least four verses for each outcome. Some diviners are said
to know as many as 80 for some of them, but the diviners continue to
learn throughout their years.

10

Map 1.2 Africa.
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After attracting Ifa’s attention by tapping sticks or bells, the diviner
recites the necessary initial prayers and invocations. Then begins the
casting of the outcomes. The procedure can utilize a set of 16 palm nuts,
or a divining chain. We begin by describing the use of palm nuts, that is
the nuts from inside the fruit of the Elaeis guineesis idolatrica or King
Palm. The diviner beats the nuts together with both hands and then
grasps a handful in his right hand, leaving only one or two nuts in his
left hand. (If there are more than one or two remaining, the trial does not
count and is ignored.) If one nut remains in the diviner’s left hand, two
short lines are made in the dust on his wooden tray; if two nuts remain,
one short line ismade on the tray.When questioned by a visitor as towhy
the number of marks and the number of remaining nuts were reversed,
the diviners responded that this is the way they were taught by Ifa. I
interpret this as implying that, to the diviners, the markings are not
counts of the nuts remaining, as was assumed by the visitor. They are,
instead, twodifferent arbitrary symbols (|| and |) being used to distinguish
between different occurrences. In all, this procedure is repeated until
there are eight successful trials.
The marks on the tray are arranged into two columns of four each by

alternating between the right and left columns on each trial. That is, the
order in which the column positions are filled is as shown in Figure 1.1.
Each position contains either one mark or two marks. If the nuts
remaining on the eight trials were 1, 2, 2, 1, 1, 1, 2, 1, the resulting
columns would be as shown in Figure 1.2. Each column results in one
of the named Ifa figures. Because each of the four positions in a column
can be filled in one of two possible ways, there are 2·2·2·2 ¼ 16
different named Ifa figures that possibly could result. The meanings
of the figure names are unknown, although in some myths the figures
are described as the sons of Ifa.

THE LOGIC OF DIVINATION
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Figure 1.1 The order in which column positions are filled when casting with palm
nuts.

2 1

4 3

6 5

8 7
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In our example (Figure 1.2), the name of the figure on the right is
Ofun, and the figure on the left is O̧bara. The pairing, in this case Ofun
O̧bara (readings are right to left), determines the verses to be recited by
the diviner. As with the Caroline Island divination, the number of
possible pairings is 16 £ 16 ¼ 256. And, in both systems, each of
the 256 possible pairings seems equally likely to occur. But, quite
different from the Caroline Islands, each Ifa outcome elicits a collection
of verses rather than just a single phrase or set of key words, and, as was
already noted, the Yoruba client plays a much larger role in the inter-
pretation phase.
If, instead of palm nuts, the divining chain is used, a pair of columns

would still result,with four positions each, tobeassociatedwith thenamed
Ifa figures. The symbols for the figures, however, are slightly different. A
divining chain contains eight halves of seed pods or seed shells (often the
pods from the o̧pȩlȩ or Schrebera golungensis tree) spaced out along the
length of the chain such that they form two sets of four each, with a large
space between them. The pod halves have two distinct sides: one showing
the inside of the pod and the other showing the outside.
The pods are connected to the chain so that each can swing around

freely and fall with either its inside or outside showing. As the diviner
casts the chain onto a flat surface, he holds it in the space between the
sets of pods so that the two segments of chain fall into parallel lines.
Now the indicators are the insides and outsides of seed pods rather than
the single or double marks made on a tray (see Figure 1.3). Again, there
are two columns of four positions each, where each position can be
filled in one of two ways. By associating a pod showing its inside with
one mark (|) and a pod showing its outside with two marks (||), Figure
1.3 represents the same ordered pair, Ofun O̧bara, as did Figure 1.2. It
calls forth the same verses from the diviner. An important difference,

CHAPTER 1
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Figure 1.2 The outcome of a casting with palm nuts. The columns shown result from
eight trials in which there remained 1, 2, 2, 1, 1, 1, 2, 1 nuts, respectively.
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however, is that just one cast of the divining chain accomplishes the
same end as eight successful trials using the palm nuts.
There is another aspect of Ifa divination that adds much to its richness

and logical complexity. Once the chain or nuts are cast, but prior to the
verses being recited, the client can ask a series of questions so phrased
that the answers are choices between two specific alternatives, or among
three alternatives, four, or even five. These questions and answers shed
light on the issue at hand and help the client to select and interpret the
verse he eventually chooses. The client can ask, for example, if the
prediction will be for good fortune or for bad fortune. An answer of
good fortune can be followed by asking which of the five desirable
things in the world it will relate to: long life, money, wives, children,
or victory over one’s enemies. Juxtaposition of the outcomes of a series
of castings determine which of the alternatives is the answer. The 256
figure pairs, that is, the possible outcomes of a single casting, have a
specific rank order. The order is built upon certain principles. For
example, pairs with repeated figures, such as O̧bara O̧bara, rank
above pairs made up of different figures, and pairs containing the figure
Ofun in either position have the same rank as those with O̧worin in that
position. (Some rationales for the ranking involve seniority among the
sons of Ifa, and, echoing the importance of twinness in Yoruba culture,
equality of the ranking of Ofun and O̧worin involves an ongoing fight
for position between two sons who are twins.)

THE LOGIC OF DIVINATION
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Figure 1.3 The outcome of a casting with a divining chain. X indicates the outside
of a pod; K indicates the inside of a pod. (Notice that the ends are marked differently
to insure that the same side is always made to fall on the right.) Compare this with
Figure 1.2.
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For choosing between just two alternatives, the first stated alternative
is the answer if the outcome of the first cast ranks higher than or equal
to the outcome of the second cast. For three or more alternatives, there
are nine specific outcomes on the first cast that stop the casting and
indicate that the first alternative is to be chosen. If the outcome is not
one of those nine figure pairs, the casting continues, and the alternative
with the highest ranking outcome is selected as the answer. Again,
equality of rank favors the alternative for which the figure pair first
appeared. For this phase of the divination, because of its greater speed
in obtaining each outcome, the divining chain is usually used. In the
end, however, it is the original casting and the verse selected from the
set of verses elicited by that casting that provide the prediction and,
equally important, stipulate the necessary offering that is to be made.
All of the other questions only elaborate and elucidate the prediction
and offering.

4 Both modes of divination discussed so far, Caroline Island knot
divination and Yoruba Ifa, involve randomizing processes and

formal procedures. In the knot divination, the mathematical ideas are
primarily numerical: counting modulo 4; addition modulo 4; identify-
ing destiny spirits by ordered pairs of numbers; and linking significant
words or phrases to ordered pairs of ordered pairs of numbers. By
contrast, in Ifa, the mathematical ideas are primarily logical; that is,
creating symbolic representations of the outcomes; using ordered pairs
of these representations to elicit the verses, and comparing and select-
ing among ranked symbolic representations. Sikidy, the system of divi-
nation that is our next focus, has a long and broad history. Its practice is
ongoing and is of great significance in Madagascar. It, too, starts with a
randomizing process, and, as we shall see, the randomizing process has
similarities to both the Caroline Island mode of knot counting and the
Yoruba mode of representation of nut remainders. However, in Mala-
gasy sikidy, as the divination continues, it involves mathematical ideas
that are far more extensive.
Between the initial random process and the interpretation phase of

sikidy, a multistep algebraic algorithm is followed. What is more, after
applying the algorithm, the diviners use methods relying on the logical
structure of the results to check that the algorithm has been properly
carried out, and the interest and concerns of the diviners extend beyond
the divination procedure to the symbolic forms themselves.
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5 Madagascar is an island about 380 km off the east coast of Africa
just opposite Mozambique (seeMap 1.2). One of the largest islands

in the world, it is approximately 1500 km long and 500 km wide and, in
1996, had a population of about 15million people.Madagascar has about
20 different ethnic groups, but all of them share essentially the same
language and much in the way of culture. The language is classed as a
Western Indonesian subgroup of the Malayo-Polynesian language
family, and so the earliest immigrants are thought to be originally
from theMalayan–Indonesian archipelago. The numeral words, in parti-
cular, are considered almost identical to some others in that language
family, and some groups on the island have outrigger canoes, quadrilat-
eral houses on stilts, and circular fishing nets, all usually associated with
Indonesian and Malayo-Polynesian culture.
Although its mechanism is unclear, there was, in addition, significant

Islamic influence from about 750 CE to 1150 CE. While the religion
itself was not adopted, traces of Arabic influence remain in the
language, in particular in the names of months and of days, and in
the use of Arabic script. At about the same time, there began substantial
and continuous importation of African slaves and, hence, aspects of
African cultures. This diversity of people and cultures was fused and
politically organized through an expansionist, feudal-type monarchy
established by the indigenous Sakalava people in the 16th century
and then superseded in the early 19th century by the indigenous Merina
kingdom. In 1896, the island was colonized by the French. Then, in
1959, Madagascar became the independent Malagasy Republic.
Throughout all the political and cultural changes of the past four

centuries and despite internal political and cultural differences, some
form of divination has remained in every part of Madagascar. There
are variations, but there are basic essential similarities. And these
similarities are intertwined with other shared aspects of the culture
in which the divination is embedded, such as beliefs and practices
related to ancestors and family tombs, residence and inheritance rules,
and witchcraft. Because of the similarities, we will discuss Malagasy
divination without distinguishing among the ethnic groups.
The ombiasy–a diviner who is expert in sikidy–specializes in guiding

people. He has a long apprenticeship, a formal initiation, knowledge of
formal divining practices, and, above all, an interactive approach in
which the use and interpretation of the divining materials are combined
with asking the client questions and then phrasing new questions to
guide the next stage in the divination. The diviner discusses the inter-
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pretations with the client until the client determines the specific actions
or answers that are relevant to solving his/her problems.
The important place of divination and the diviner inMalagasy culture

can be seen from the broad array of questions brought for resolution.
Some questions involve the day on which something should be under-
taken whether it be a trip, planting, or ceremonial moving of the family
tomb. There is a long tradition of adoption and fosterage, that is, placing
children temporarily or permanently with other families. Hence, upon
the birth of a child, the diviner is consulted to see how well the destinies
of the child and its parentsmatch orwhether another family is preferable.
Other significant problems for resolution by divination are finding a

spouse, finding lost objects, identifying thieves, and identifying the
causes of illness, sterility, or any other misfortune. In Western medi-
cine, for example, a virus may be considered the ‘‘cause’’ of an illness,
but that does not answer the question of how, specifically, the illness
was acquired, and why it was acquired by that individual at that time
and in that place. To answer questions of cause, the Malagasy delve
deeply, and the answers may well involve the actions of ancestors and/
or witchcraft. Based on their knowledge and experience, some ombiasy
are considered specialists and concentrate on dealing only with divina-
tion questions in their area of expertise.
As part of the initiation process of an ombiasy, the initiate must

ceremonially gather for his subsequent use between 124 and 200 dried
seeds of a fano tree (Piptaenia chrysostachys). To begin a divination
session, the ombiasy, using various incantations, awakens the seeds in
his bag and the verbal powers within him. The incantations include
the origin myth of sikidy, which links it both to the return by walking
on water of Arab ancestors who had intermarried with Malagasy but
then left, and to the names of the days of the week.
The diviner takes a fistful of seeds from his bag and randomly lumps

them into four piles. Each pile is reduced by deleting two seeds at a
time until either one or two seeds are left in the pile. The four remain-
ders become the entries in the first column of a tableau. If, for example,
the four piles began with 21, 16, 19, 13 seeds, respectively, the remain-
ders would be 1, 2, 1, 1 seeds. In effect, that is counting modulo 2:
21(mod 2) ¼ 1, 16(mod 2) ¼ 2, 19(mod 2) ¼ 1, 13(mod 2) ¼ 1. Since
each of the four positions in the column can have one of two entries
(either one seed or two seeds), the number of different columns that can
result is 2·2·2·2 ¼ 16. These 16 different possible outcomes are shown
in Figure 1.4.
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The entire process, beginning with another selection of a fistful of
seeds from the bag, is then repeated three more times. Each time the
results are placed in a column to the left of the previous column. Thus,
the overall array is made up of four randomly generated columns of four
entries each. With 16 different ways that each of the four columns can
be filled, the total number of different possible arrays is 16·16·16·16 ¼
65,536.
This randomly generated set of data is called the mother-sikidy. An

example is shown in Figure 1.5. To enable us to refer to the columns
and resultant rows, we will call them, as is also shown in Figure 1.5, C1,
C2, …, C8 where C1 through C4 are the columns, and C5 through C8 are
the rows.
The mathematical ideas involved in the algebraic algorithm that is

next applied to the mother-sikidy fall within what modern mathemati-
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Figure 1.5 An example of a mother-sikidy. There are four randomly generated
columns of four entries each where each entry is one seed or two seeds. Our labels
for the columns, C1, C2, C3, C4, reflect the order in which they were placed. The same
data, viewed horizontally, will be referred to as C5, C6, C7, C8.

C4 C3 C2 C1

# # # #
oo o oo o ˆ C5

o o oo oo ˆ C6

o oo o o ˆ C7

oo o o o ˆ C8

Figure 1.4 The 16 possible columns. Each column has four positions each of which
can contain o (one seed) or oo (two seeds).

o oo o oo o oo o oo

o o oo oo o o oo oo

o o o o oo oo oo oo

o o o o o o o o

o oo o oo o oo o oo

o o oo oo o o oo oo

o o o o oo oo oo oo

oo oo oo oo oo oo oo oo
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cians refer to as Boolean algebra and two-valued logic. Before
proceeding to the specific algorithm, let us draw together some of
our relevant mathematical ideas.

6 In 1937, in his master’s thesis at MIT, Claude E. Shannon intro-
duced the use of symbolic logic to simplify switching circuits. One

of his examples was the automatic addition of binary (base two)
numbers using only relays and switches. Base two numbers involve
only the two different symbols 0, 1 (called bits, a contraction of binary
digits), as contrasted to base 10 numbers in which there are the 10
different digits 0, 1, 2, …, 9. Also, in a base 10 multidigit number,
each consecutive position to the left is worth one higher multiple of 10,
while in a base two number, the consecutive bit positions are worth one
higher multiple of 2.

Example

Base 10 number : 403510¼ 4 ð1000Þ1 0 ð100Þ1 3 ð10Þ1 5:

Base two number : 10112¼ 1 ð8Þ1 0 ð4Þ1 1 ð2Þ1 1:

The application introduced by Shannon was new and of extreme impor-
tance as base two number representation and its automatic electrical
manipulation became the internal operating mode for digital compu-
ters. The algebra of logic that he used, however, was about 100 years
old, having been developed primarily by George Boole and discussed
in his 1847 The Mathematical Analysis of Logic. One of Boole’s stated
concerns was to express ‘‘logical propositions by symbols, the laws of
whose combinations should be founded upon the laws of the mental
processes which they represent…’’ Further, the symbols need not be
interpreted as magnitudes but ‘‘every system of interpretation…is
equally admissible, and it is thus that the same process may, under
one scheme of interpretation, represent the solution of a question on
the properties of numbers, under another, that of a geometrical
problem, and under a third, that of a problem of dynamics or optics.’’
Or, as we are adding here, the interpretation may represent the solution
of a problem in divination.
In Boole’s system, there are, first of all, symbols that represent

classes of objects, then rules of operation on the symbols, and, finally,
the observation that the rules he established are the same as would hold
in the two-valued numerical algebra of 0 and 1. Boole’s basic opera-
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digits), as contrasted to base ten numbers in which there are the ten 
different digits 0, 1, 2, ..., 9. Also, in a base ten multidigit number, 
each consecutive position to the left is worth one higher multiple of ten,
while in a base two number, the consecutive bit positions are worth one
higher multiple of two.

Base ten number : 403510 ! 4 (1000) " 0 (100) " 3 (10) " 5.
!
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tions on classes x and y were forming a new class of things that are
either x’s or y’s but not both (referred to here as OR and symbolized by
‘‘1’’), and forming a new class by selecting things that are both x’s and
y’s (referred to here as AND and symbolized by ‘‘·’’). In terms of 0 and
1, the results of these operations are:

Later, Jevons, in his book Pure Logic of 1864, modified the OR opera-
tion, and, in what is now known as Boolean algebra, it is:

Notice that, in general, that is, whether x ¼ 0 or x ¼ 1, x·x ¼ x and x1
x ¼ x. Both the OR and AND operations are what we call commutative
and associative. To be commutative means that the result remains the
same regardless of the order of the elements to which the operation is
applied. That is, x·y¼ y·x and x1 y¼ y1 x. (Amore familiar example of
commutivity is our ordinary additionwhere a1 b¼ b1 a. Our ordinary
subtraction, however, is not commutative, that is, a 2 b – b 2 a.)
Associativity refers to the grouping of operations. It means that conse-
cutively applied operations give the same result regardless of which is
carried out first. That is, x·(y·z)¼ (x·y)·z and x1 (y1 z)¼ (x1 y)1 z.
[Again, using our ordinary arithmetic as an example, multiplication is
associative, a(bc)¼ (ab)c, but division is not, a=ða=cÞ – ða=bÞ=c.] For the
two-valued case of commutivity, observe that 0·1¼ 1·0¼ 0 and 01 1¼
1 1 0 ¼ 1. For associativity, there are many more cases to verify, for
example, 01 (11 1)¼ (01 1)1 1¼ 0. In Boolean algebra, in addition
to the OR andAND operations, there is also an operation creating Not-x,
now more commonly known as !x or as taking the complement of x. For
the two-valued case, when x ¼ 0, !x ¼ 1 and for x ¼ 1, !x ¼ 0.
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AND (·) OR ( 1 )

0·0 ¼ 0 01 0¼ no interpretation
1·1 ¼ 1 11 1¼ no interpretation
1·0 ¼ 0 11 0¼ 1
0·1 ¼ 0 0 1 1 ¼ 1

OR ( 1 )

01 0¼ 0
11 1¼ 1
11 0¼ 1
01 1¼ 1
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For Shannon, concerned with the construction of circuits, the OR
operation was seen as analogous to placing switches in parallel and the
AND operation to placing them in series. He further identified the
values 1 and 0 with the states of the switches being closed and open,
respectively, and hence with the transmission or non-transmission of
electrical pulses. Thus, for two switches in series, both must be closed
to transmit a pulse (1·1 ¼ 1), while if one or the other or both are open,
there is no pulse transmitted (0·1 ¼ 0, 1·0 ¼ 0, 0·0 ¼ 0). This case is
familiar in strings of decorative lights, such as those used on Christmas
trees. When there are two or more lights on a string, if one light is not
operating (hence, not transmitting a pulse), the overall string does not
operate. However, for two switches in parallel, at least one must be
closed for the circuit to transmit a pulse (11 1¼ 1, 11 0¼ 1, 01 1¼
1), while only if both are open is no pulse transmitted (0 1 0 ¼ 0).
Here, a common situation is, say, a radio and a toaster plugged into a
double outlet in your kitchen. Depressing the toaster button–closing its
switch–starts the toast whether or not the radio is playing, and, simi-
larly, the radio works with or without the toaster. Only if neither is in
use does no electricity flow. In electrical circuits, an inverter is analo-
gous to the Boolean complement, that is, it changes a pulse to no pulse
and vice versa ( !1 ¼ 0, !0 ¼ 1).
Shannon’s goal was to construct circuits that could carry out arith-

metic processes. This is greatly simplified by using numbers in base
two form, where only the two symbols 0 and 1 are involved in the
arithmetic. His accomplishment was to combine the basic operations
of the two-valued Boolean algebra, so that the result would be the sum
of the binary numbers, and then to use his switching analogies to
physically construct such a circuit. By first forming a Boolean expres-
sion for the circuit, other logically equivalent expressions could be
derived from it algebraically; from among them, the simplest could
be selected for actual physical construction.
Combinations of the basic AND, OR, and complement operations

can be considered Boolean operations in and of themselves. The opera-
tion of particular interest here because of its central role in sikidy is the
exclusive or, referred to in current computer science texts as XOR and
denoted by ‘‘%’’. The circuit for this operation plays a significant role in
computer circuitry as it is an important component of Shannon’s binary
adder. For 0 and 1, the results of an XOR operation are:
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This operation is also commutative and associative; that is, x% y¼ y%
x and (x % y) % z ¼ x % (y % z).
Further, it has the properties that, whether x ¼ 0 or x ¼ 1, x % x ¼ 0

and x % 0 ¼ x. (In formal mathematical terminology, 0 and 1 form an
Abelian group under XOR, with 0 the identity element and each
element its own inverse.) In the symbolism of Boolean algebra, x %
y can be expressed as !x·y1 x· !y, or in numerous other ways including
(x 1 y)·(x·y). The switching circuit embodiment for the latter is shown
in Figure 1.6.
As well as being a component of a computer’s binary adder, the

current importance of XOR also stems from its use in the detection
of errors in the electronic transmission of binary data. The procedure
involved is referred to as even parity checking. Received binary data
are checked to see whether the total number of 1s in it is odd or even.
To insure that it will be even, an additional appropriate bit is sent along
with the data. Thus, if the checking yields an odd number of 1s, there
was an error in the transmission. The XOR easily handles this parity
checking: combining any number of 0s and 1s consecutively via XOR
gives a 1 if the number of 1s is odd and an 0 if the number is even. We
find, in sikidy, that in addition to XOR being the central operation, the
mode of even parity checking is also used.
In sikidy, using the modern algebraic terminology, the symbols for

the classes in its two-valued logic are o (one seed) and oo (two seeds).
For these, the results of the XOR operation are:

(Although the ombiasy surely did not think of this as the exclusive or
and did not call the operation he applied XOR, he did use these rules of
combination. We, therefore, will use our descriptor XOR when describ-
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XOR (% )

0 % 0 ¼ 0
1 % 1 ¼ 0
1 % 0 ¼ 1
0 % 1¼ 1

XOR ( % )

oo % oo ¼ oo
oo % oo ¼ oo
oo % oo ¼ o
oo % oo ¼ o.
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ing what he did.) The commutative and associative properties of XOR,
of course, remain unchanged. Now, however, oo is the identity; that is,
x % oo ¼ x and x % x ¼ oo. Another visualization of XOR that may
assist in following the sikidy algorithm and checking procedures is to
associate o (one seed) with odd and oo (two seeds) with even. Then, the
rules of combination of XOR behave like the addition of odd and even
numbers:

with even acting as the identity; that is, for x¼ odd or even, x% even=x
and x % x ¼ even.
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Figure 1.6 XOR circuit diagram.

odd % odd ¼ even
even % even ¼ even
odd % even ¼ odd
even % odd ¼ odd
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7 With these ideas in hand, we return to the procedures of sikidy.
There was, so far, the mother-sikidy, a randomly generated set of

data whose four columns and four rows we called C1, C2, C3, C4 and C5,
C6, C7, C8, respectively (an example was Figure 1.5).
Next, using the XOR operation and these columns and rows, an

additional eight columns are generated. The algorithm for their genera-
tion involves not only what is to be calculated but the order in which it
is to be done and where each result is to be placed. Just as we used C1,
C2, C3, C4 to reflect the order in which the initial random columns were
generated, we will use C9, C10, …, C16 to reflect the order in which the
next eight columns are generated. Figure 1.7 shows where each of them
is placed.
The algorithm begins with the formation of column 9 based on the

contents of rows 8 and 7: C9 ¼ C8 % C7, that is, position by position,
moving from right to left, the elements of C8 and C7 are combined via
XOR to produce the corresponding elements of C9. For the example of
Figure 1.5 where the elements of C8 and C7 are

o oo o o ˆ C7

oo o o o ˆ C8

the calculation would be o% o¼ oo, o% o¼ oo, o% oo¼ o, and oo%
o ¼ o, with the result that C9 is

oo

oo

o

o
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Figure 1.7 The placement of the columns.
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Next, column C10 is similarly generated from rows C6 and C5. Then
from columns C4 and C3, still position by position, but now moving
from top to bottom, the corresponding elements of C11 are formed (oo%
o ¼ o; o% o¼ oo; o% oo¼ o; oo% o¼ o), and, similarly, C12 results
from combining the corresponding elements of C2 and C1. Next, C9 and
C10 just generated are used to create C13, and C11 and C12 combine to
give C14. These, in turn, are joined to give C15, and finally, C15 and C1

are combined to give C16. Throughout, of course, it is the operation
XOR that is used to combine the corresponding elements. The algo-
rithm can be summarized as follows:

Applying the algorithm to the example of the initial mother-sikidy in
Figure 1.5, the final tableau is shown in Figure 1.8. It would be bene-
ficial to follow the algorithm through the example. Notice, as you do,
the spatial as well as algebraic aspects of the algorithm. For example, it
is the adjacent columns or rows that are combined, but the results are so
placed that their combination is then centered between them: C13 goes
between C9 and C10; C14 is between C11 and C12; and C13 and C14 are
equally spaced to either side of C15. Columns 9 through 16 are referred
to by the Malagasy as the descendants of the mother-sikidy. Each
column in the final tableau has a referent, such as, C4 is associated
with the earth, C11 with the ancestors, and C15 with the creator (the
referents are in Table 1.1).
Before proceeding with the interpretation phase of the divination, the

ombiasy uses his knowledge of the logical structure of the tableau to
check that the algorithm has been carried out correctly. He knows
several relationships that the tableau must contain regardless of the
initial random data. These relationships are particularly interesting
because of their differences: one involves examination of the overall
tableau; another involves examining the results of combining some
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C90 ¼ C80 % C7

C10 ¼ C60 % C5

C11 ¼ C40 % C3

C12 ¼ C20 % C1

C13 ¼ C90 % C10

C14 ¼ C11 % C12

C15 ¼ C13 % C14

C16 ¼ C15 % C1
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particular columns; and yet another, the parity check, involves exam-
ining only one specific column.
First of all, the ombiasy knows that at least two of the 16 Ci must be

the same. In order to assure ourselves of this, we will prove that it is
true, using a method called a proof by contradiction. Consider that there
are 16 Ci and there are 16 different possible columns that can have one
or two seeds in each of its four positions. So, if all 16 Ci were different,
they must contain one of each of the possible 16. Looking at the 16
possible columns in Figure 1.4, observe that in each of the four posi-
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Table 1.1 Column referents

C1: the client (the person seeking the consultation)

C2: material goods

C3: a male evil-doer (lit.–the third)

C4: the earth

C5: the child C11: the ancestors

C6: the bad intentions C12: the road

C7: a woman C13: the diviner

C8: the enemy (lit.–the eight) C14: the people

C9: the spirit (lit.–the ninth) C15: the creator

C10: nourishment C16: the house

Figure 1.8 An example of a final tableau. (C1, …, C8 contain the same initial random
data as is shown in the mother-sikidy in Figure 1.5. C9, …, C16 are her descendants.)
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tions, eight of the columns have oo and eight have o. Combining all 16
of the columns, position by position, via XOR, therefore, would give

oo

oo

oo

oo

However, using the algebraic definitions of the descendant Ci and keep-
ing in mind that 2(x)¼ x% x¼ oo and oo% x¼ x, combining all of the
Ci in a tableau yields

C1 % C2
|fflffl{zfflffl}

C12

% C3 % C4
|fflffl{zfflffl}

C11

% C5 % C6
|fflffl{zfflffl}

C10

% C7 % C8
|fflffl{zfflffl}

C9

% C9 % C10 % C11

% C12 % C13 % C14
|fflfflffl{zfflfflffl}

C15

% C15 % C16

¼ 2 C9 % C10 % C11 % C12 % C15

" #

% C16¼ C16¼ C15 % C1:

If this combination gave the same result as combining the 16 different
possible outcomes, that is, if it were

oo

oo

oo

oo

it would necessarily mean that in each of the four positions, C15 and
C1 were either both o or both oo, and hence, C15 and C1 are always
both the same. The assumption that the 16 Ci were all different has
led to a conclusion that these two Ci are the same. This contradiction
tells us that the assumption must have been incorrect: the 16 Ci can
not include one of each of the 16 possible results and so must include
some repetition. In our example (Figure 1.8), due to the particular
initial data, there are several repetitions (such as C1 and C11 or C3 and
C7) within the tableau, but, as we have shown, there must be some.
The next check carried out by the ombiasy involves what they call

‘‘the three inseparables.’’ The inseparables are three particular pairs of
Ci: C13 and C16; C14 and C1; and C11 and C2. The ombiasy know that the
results obtained when combining each pair via XOR is always equal to
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the results for the others. Again, using the algebraic definitions of the
columns, we can prove to ourselves that this must be the case:

C13 % C16¼ C13 % ðC15 % C1Þ ¼ C13 % ðC13 % C14Þ % C1

¼ C14 % C1 and

C14 % C1¼ ðC11 % C12Þ % C1¼ C11 % ðC1 % C2Þ % C1¼ C11 % C2:

In the example in Figure 1.8, these ‘‘inseparables’’ all, of course, give
the same result, namely

o

oo

oo

oo

The next and final check is the parity check: the creator (C15) must
contain an even number of seeds. In the example in Figure 1.8, it surely
does. To show this generally, however, we will show that when the four
positions within C15 are combined via XOR, the result must be oo.
From the algebraic definitions

C15¼ C13 % C14¼ ðC9 % C10Þ % ðC11 % C12Þ
¼ ðC1 % C2Þ % ðC3 % C4Þ % ðC5 % C6Þ % ðC7 % C8Þ:

Focusing on just the first element in C15, this statement tells us that its
value results from combining the four elements across the first row of
the mother-sikidy and the four elements down the first column. Simi-
larly, the second element in C15 comes from combining the elements
across the second row and down the second column. The third element
comes from the third row and the third column, and the fourth element
from the fourth row and fourth column. Then, when these four elements
of C15 are combined, it effectively utilizes each of the elements of the
mother-sikidy twice–once from the contributions going across the rows
and once from going down the columns. Since, for any x, x % x ¼ oo,
using each of the elements twice must result in oo.
Only if all the results are correct does the diviner continue with his

complex and discussive interpretations. As the divination continues
beyond the beginning standard algorithm, there are about 100 more
formulas he can call into play, all built upon the same initial data
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and using the same two-valued logic. For example, one secondary
series is obtained by reading columns diagonally rather than up and
down or right to left. Figure 1.9 shows how C17, C18, …, C22 are read
and then combined via XOR to give C23, C24, and C25. In Figure 1.10
another, more intricate, reading pattern is used to define the series C26,
…, C29 which, when combined, gives C30 and C31.
In every case, no matter how they are read or combined, the result

is always one of the 16 possible columns made up of four entries each.
The diviner’s interpretation of the results and the generation and
interpretation of additional results depend on which of the 16 appear
and on their juxtaposition to each other. Interpretation is where the
logical algebra leaves off and the attribution of meaning begins. The
interpretations are not rote or standardized and vary with the ethnic
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Figure 1.9 A secondary series using diagonal readings from the tableau. C17, for
example, is the first element of C9, the second element of C13, the third of C10, and
the fourth of C15.

Figure 1.10 Another secondary series using a patterned selection of elements from
the tableau. C26, for example, is the first element of C16, the second and third of C12, and
the fourth of C16.
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group, the diviner, and, above all, the situation under discussion and
the course of the discussion. There are, however, some shared themes
that we explore further because they involve additional mathematical
ideas.
First of all, the diviners identify the 16 possible outcomes by names,

although the names may differ in different regions. Some, but not all, of
the names are related to the names of the months. Also, for many divi-
ners, the 16 outcomes have particular directional associations. This
imposition of spatial orientation on the outcomes echoes other aspects
ofMalagasy culture. In particular, there is strong belief in astrology and,
in that, 12month names are associatedwith 12 radial directions. Further,
directionality is a significant part of daily life. A north–south axis and an
east–west axis determine the positioning of houses in a village and the
positioning of rooms within a house. Ordering along the north–south
axis reflects relationships among the living, and ordering along the east–
west axis reflects relationships between the dead and living. Thus, for
example, houses of the village founder are in the northeast corner of a
village, and, if possible, a son builds to the southwest of his father’s
house. The north and east are associated with men, adults, seniors, kins-
men, the dead, and royalty, in contrasted to the south’s and west’s asso-
ciation with women, children, juniors, strangers, the living, and
commoners. Also, different directions have different values–the north-
east is good, while the southwest is lacking in virtue, and the directions
between vary in religious andmoral value. As a result, there are not only
prescribed house and tomb orientations, but also prescribed interior
layouts extending towhere specific items need be stored and howvisitors
position themselveswhen gathered in a room. The positioning of visitors
joins direction with social status–the most important stand toward the
northeast and the least important toward the southwest.
The Malagasy concern for spatial positioning and its social conco-

mitants are reiterated in sikidy. Each of the 16 possible columns is
conceived of by the diviners as associated with a particular place in a
square. The axes of the square are oriented north–south and east–west
with each of the sides, therefore, identified with one of the four cardinal
directions. The eight possible outcomes that contain an even number of
seeds are categorized as princes, and the eight with an odd number of
seeds are slaves. Their positions in the square are shown in Figure 1.11.
The square is separated into halves by the diagonal that joins its

northeastern and southwestern corners–the northwestern half is called
the Land of Slaves, and the southeastern half is called the Land of
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Princes. However, the Land of Slaves does not only contain slaves, nor
does the Land of Princes only contain princes. As can be seen in Figure
1.11, there are slaves and princes in each half, but there are also two
migrators, that is, one slave and one prince that move, more or less,
with the sun, and so their place depends on the time of day of the
divination. From sunup to 10 a.m. the migrators are in the east, from
10 a.m. to 3 p.m. in the north, from 3 p.m. to sunset in the west, and
never in the south as divination does not take place at night. (Some
diviners always associate the migrators with the west.) Power inequal-
ities result from rank and place: princes are more powerful than slaves;
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Figure 1.11 The positions associated with the 16 possible outcomes. The two in the
center are the migrators. (Note the symmetric placement of slaves and princes in their
respective lands.)

Ascher, M. (2002). Mathematics elsewhere : An exploration of ideas across cultures. ProQuest Ebook Central <a
         onclick=window.open('http://ebookcentral.proquest.com','_blank') href='http://ebookcentral.proquest.com' target='_blank' style='cursor: pointer;'>http://ebookcentral.proquest.com</a>
Created from nyulibrary-ebooks on 2020-09-29 16:38:01.

C
op

yr
ig

ht
 ©

 2
00

2.
 P

rin
ce

to
n 

U
ni

ve
rs

ity
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



slaves (or princes) from the Land of Princes are more powerful than
slaves (or princes) from the Land of Slaves; slaves from the same land
are never harmful to each other; and battles between two princes from
the Land of Princes are always serious but never end in death.
An example of a divination that makes use of these relationships is

one related to illness. If, in the final tableau, the client (C1) and the
creator (C15) are the same, there definitely will be recovery; if the client
and the ancestors (C11) are the same, the illness is due to some discon-
tent on the part of the ancestors; and if the client and the house (C16) are
the same, the illness is the same as an earlier illness from which there
has been recovery. The result of the combination C1% C9 has the illness
itself as a referent. If, for example, the client is a slave of the east, and
the illness is a prince of the south, the client is dominated by the illness,
and so it is serious. However, since both the east and south are in the
Land of Princes, the illness will not lead to death. If, however, the client
were a prince of the north (Land of Slaves), there would be a strong
battle with a good chance that the ill person would die. Some tableaux
are considered to be exceptionally serious and quite hopeless. The most
extreme is ‘‘the red sikidy’’, in which C1, C2 and C3, and C4 are all

oo

oo

oo

oo

In this case, all 16 Ci in the tableau are the same. Some of the initial
questions and answers in a divination related to illness are straightfor-
ward, but in general, the divination will continue with less program-
matic combinations to answer further questions on causes and cures.
The attribution of directionality to the outcome gives rise to

tableaux with special importance. The power to see into the past or
future is greater if all four regions, east, west, north, and south, are
represented in a tableau. Tableaux with the most power, however, are
those in which all four regions are represented, but at least one region
has only one representative. These distinctive tableaux are referred to
as sikidy-unique, and they hold special abstract interest for the
ombiasy. In Figure 1.12a, C8 is the sole representative of the south.
(Although C10 is a migrator that causes no problem as a migrator can
never be in the south.) The tableau in Figure 1.12b is even more
unusual in that it has the creator (C15) as the only representative

THE LOGIC OF DIVINATION

31

Ascher, M. (2002). Mathematics elsewhere : An exploration of ideas across cultures. ProQuest Ebook Central <a
         onclick=window.open('http://ebookcentral.proquest.com','_blank') href='http://ebookcentral.proquest.com' target='_blank' style='cursor: pointer;'>http://ebookcentral.proquest.com</a>
Created from nyulibrary-ebooks on 2020-09-29 16:38:01.

C
op

yr
ig

ht
 ©

 2
00

2.
 P

rin
ce

to
n 

U
ni

ve
rs

ity
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



from the east, as well as having a single representative from the west
(C3), and a single representative from the north (C16)–all the rest of the
Ci are from the south. The interest of the ombiasy in the sikidy-unique
extends well beyond any practical or divinational needs. These special
forms are sought by the ombiasy for themselves, that is, in addition to
simply encountering them in the course of divinatory consultations,
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Figure 1.12 Examples of sikidy-unique. The associated direction is shown for the
specific outcome in each column. In (a), C8 is the sole representative of the south. In (b),
C15, C3, C16 are the sole representatives of the east, west, and north, respectively.
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finding beginning data that lead to such tableaux is an intellectual
pursuit in and of itself. Knowing as many as possible increases pres-
tige: some such tableaux are publicized by being posted on doors;
some are shared with other ombiasy by word of mouth; and there is
speculation, but with no persuasive evidence, that some ombiasy have
secret rules for generating certain types of sikidy-unique. No one
knows all of them or how many there are, and so the search for
them continues.

8 Most often, the way that mathematical ideas are expressed in a
traditional culture is unique to that culture or, at most, is shared

with nearby neighbors. For sikidy, however, this is not the case. There
are several reasons to believe that sikidy was influenced by an early
form of Arabic divination called ilm er-raml or science of the sand.
First, as we noted before, Arab ancestors are described in the sikidy
origin myth as told by the diviners at the start of a divinatory session.
Also, Islamic month names are used within the Malagasy divination,
and there are some writings about the divination in a Malagasy script
derived from the Arabic. This early Arabic influence on Madagascar
has been linked by historians to the Arabic sea-going trade in the ninth
or 10th century CE, involving the southwest coast of India, the Persian
Gulf, and the east coast of Africa.
Communication, however, goes in both directions. If Arabic ideas

influenced Malagasy divination, it is quite likely that, in turn, Malagasy
ideas influenced the Arabic version. Bernard Carra de Vaux, a historian
of mathematics, wrote in the early 20th century about his investigation
into the origin of the Arabic ilm er-raml. He cited Zénâti of the Berber
subgroup, the Zénâtah, as a major author but further notes that students
of Zénâti list earlier teachers of Zénâti extending back to a Berber
contemporary of Mohammed and before him to Tomtom el-Hindi,
and still earlier going back to Idrı̂s, the god of writing. In any case,
according to other writers, the sand divination was spread by Arab
scholars, probably in the eighth and ninth centuries, to Damascus, to
Alexandria, to Cairo, into the Sudan, into Spain, and, later, into numer-
ous other places including France and Germany. And there are a
number of places where some forms of it still exist. Further, it has
been argued that some of the ongoing varieties in West Africa pre-
dated, and fed into, the Arab version.
We know that in the 12th century, when an Arabic text was translated

into Latin, ilm er-raml entered Europe under the name of geomancy.
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There are other unrelated usages of the word, but as this particular
divination mode, geomancy became widespread throughout Europe
where it remained popular through the 16th century. Thus, we see the
central algorithm and parity check of sikidy shared by numerous people,
including the Malagasy, the Arabs, and the Europeans. The Arabs and
Europeans, however, do not appear to share the Malagasy use of seeds,
the additional checks used by the ombiasy, their additional combining
formulas, or anything comparable to sikidy-unique. There is no way to
know exactly where or by whom the idea was started. Clearly, it was
shared by several peoples as they interacted, and, in the process of shar-
ing, it was modified, mixed with other ideas, and adapted to different
cultures.
Sikidy, then, is another branch of the tree-like history of ilm er-raml/

geomancy, and hence, some of the mathematical ideas in it are shared
with others. Wherever the ideas came from, when integrated into
sikidy, they became intertwined with, and tailored to, Malagasy culture.
The ombiasy became fluent in handling the mathematical ideas
included in the initial randomizing process, the two-valued logic, an
extensive algorithm involving both algebraic and spatial patterning,
checking procedures, and directional attributions of the outcomes.
And we find especially noteworthy that the ombiasy went beyond the
divination in their interest in these ideas. The search for special forms
underscores the fact that theirs is an active intellectual engagement
rather than just a complex, but rote, process.
Sikidy, ilm er-raml, and their European cousin, geomancy, make us

keenly aware that in the context of divination, the mathematical ideas
they contain were circulating among different peoples in different
cultures for hundreds of years prior to what is considered to be their
emergence in modern mathematics.

9 Divination, whether with as extensive a procedure as Malagasy
sikidy, or more limited in its steps as Yoruba Ifa or Caroline Island

knot divination, has an unusually broad spread. Because of the parti-
cular randomizing methods they contain, the forms that we examined
here share 16 as a significant number. We encountered it arising in
4·4 ¼ 16, 2·2·2·2 ¼ 16, 16·16 ¼ 256 and 16·16·16·16 ¼ 65,536. In
part, these result from making several binary choices. Many contem-
porary scholars interested in cognitive processes believe that the crea-
tion of dichotomies, such as light/dark, thick/thin, odd/even, on/off,
yes/no, up/down, and hence, binary choices, is fundamental to all

CHAPTER 1

34

Ascher, M. (2002). Mathematics elsewhere : An exploration of ideas across cultures. ProQuest Ebook Central <a
         onclick=window.open('http://ebookcentral.proquest.com','_blank') href='http://ebookcentral.proquest.com' target='_blank' style='cursor: pointer;'>http://ebookcentral.proquest.com</a>
Created from nyulibrary-ebooks on 2020-09-29 16:38:01.

C
op

yr
ig

ht
 ©

 2
00

2.
 P

rin
ce

to
n 

U
ni

ve
rs

ity
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



human thinking. So, while often found in divination, they are not a
necessary or defining property of divining. Knot divination, for exam-
ple, did not involve a binary choice: the counting modulo 4 could just as
well have been modulo 5. For modulo 5, when combining a consecutive
pair of outcomes, the number of possible pairs would be 5·5 ¼ 25, and
the number of possible pairs of pairs would be 25·25 ¼ 625. Similarly,
a four-sided astragalus could just as well be a six-sided cubic die or a
three-sided tetrahedron.
In any case, divination begins with a discrete randomizing process

that yields a finite number of possible outcomes. This initial process
may be followed by other procedures. As we have seen, it is these
additional procedures that vary considerably and range from brief to
extended. What is crucial, and what ties the divination practices
together, is that these additional procedures are systematic and clearly
spelled out. It is, therefore, not surprising that many, if not most, of the
various modes of divination have mathematical ideas as an integral
component.

Notes

1. Particularly recommended for general understanding of divination are the chapters
by Philip Peek (‘‘Introduction: the study of divination, present and past,’’ pp. 1–22,
and ‘‘African divination systems,’’ pp. 194–212) in the book he edited African
Divination Systems: Ways of Knowing, Indiana University Press, Bloomington,
1991. The article ‘‘Hellenophilia versus the history of science,’’ David Pingree,
ISIS, 83 (1992) 554–563 points to divination as a science. For this and other
ideas, the article is highly recommended. Astragalomancy as a forerunner of dice
is found in Florence Nightingale David’s ‘‘Dicing and gaming (a note on the history
of probability),’’ Biometrika, 42 (1955) 1–15, as well as pp. 1–27 in her Games,
Gods, and Gambling: The Origins and History of Probability and Statistical Ideas,
C. Griffin, London, 1962, reprinted by Dover Publications, New York, 1998. These
include the results of her experiments with astragali which showed that probabilities
of the appearance of sides valued at 1, 3, 4, 6 are l/10, 4/10, 4/10, 1/10, respectively.
Hence, the probability of 6, 6, 6, 6 is (1/10)·(1/10)·(1/10)·(1/10) ¼ 1/10,000. For a
discussion of related biblical and Talmudic ideas, see ‘‘Random mechanisms in
Talmudic literature,’’ A.M. Hasofer, Biometrika, 54 (1967) 316–321.

2. A general overview and additional references for divination in the Caroline Islands
are in ‘‘Divining from knots in the Carolines,’’WilliamA. Lessa, J. of the Polynesian
Society, 68 (1959) 188–205. (Also, for a discussion of the spatial models used by the
Caroline Island navigators, see Chapter 5 of my book Ethnomathematics: A Multi-
cultural View of Mathematical Ideas, Chapman and Hall/CRC, 1994).

In modern mathematics, in a ¼ b(mod 4), b is defined as the remainder when a is
divided by 4. As a result, the values for b are written as 1, 2, 3, 0 where 4(mod 4) ¼
0, rather than, as we have here, b ¼ 1, 2, 3, 4.
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five-sided polyhedron.
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3. A detailed study of Ifa divination among the Yoruba, including discussion of other
sources, is Ifa Divination: Communication Between Gods and Men in West Afri-
ca,William Bascom, Indiana University Press, Bloomington, 1969. Focusing on Fa,
the Dahomey version, is La Géomancie à l’ancienne Côte des Esclaves, Bernard
Maupoil, Travaux et Mémoires de l’Institut d’Ethnologie, vol. 42. Institute d’Eth-
nologie, Paris, 1943. Although also discussing Fa rather than Ifa, a valuable discus-
sion of the divination system as one that requires and teaches wisdom and
systematic objectivity, is Chapter 11, ‘‘Divination and transcendental wisdom,’’
pp. 206–222 in Ritual Cosmos: The Sanctification of Life in African Religions,
Evan M. Zuesse, Ohio University Press, Athens, 1979.
Sixteen cowries is another form of divination among the Yoruba and their descen-

dants in Brazil and Cuba. In it, the diviners can be both women and men, and the
overall process is simpler. Sixteen cowries is related to Ifa in that it is embedded in
the same religious system but has a different presiding deity. Each of the outcomes
elicits recitation of a set of verses, many of which are similar to the Ifa verses. The
point of the divination is a prediction and the associated offering to be made. Here,
too, it is the client who selects the verse, and questions phrased as alternatives can
be asked to elucidate the verse to be selected. There can, however, only be two
alternatives per question as compared to Ifa’s 2, 3, 4, or 5. The major difference is
that the different outcomes are the number of eyes facing upward when a set of 16
cowries is cast on a tray. There are, therefore, 17 distinct outcomes (0, 1, 2, …, 16),
which are clearly not equally likely. Even if each side of a cowrie shell had the same
chance of facing upward, the probability of the outcomes would be 16!/r!(162 r)!2r

where r ¼ 0, 1, …, 16. Each of the 17 outcomes is identified by a name; 12 of them
are similar to the names of the Ifa figures. A thorough discussion of ‘‘sixteen
cowries’’ and its relationship to Ifa is Sixteen Cowries: Yoruba Divination from
Africa to the New World, William Bascom, Indiana University Press, Bloomington,
1980. A fascinating discussion of the training of a ‘‘sixteen cowries’’ diviner is
‘‘Schooling, language, and knowledge in literate and nonliterate societies,’’ F. Niyi
Akinnaso, pp. 339–385 in Cultures of Scholarship, S.C. Humphreys, ed., University
of Michigan Press, Ann Arbor, MI, 1997. The article is also recommended because
it is more broadly about formal schooling as an educational mode.

5. Several different Malagasy words are used to refer to the diviners and different
scholars translate the words somewhat differently. I use ombiasy as meaning a
diviner who includes healing in his work. Also, to more fully distinguish this
mode of divination from other modes, some people specify it as sikidy alanana.

For further reading about Madagascar and Malagasy culture, see Nigel Heselti-
ne’s Madagascar, Praeger Publishers, New York, 1971 and Conrad P. Kottack’s
The Past in the Present: History, Ecology, and Cultural Variation in Highland
Madagascar, University Of Michigan Press, Ann Arbor, MI, 1980.
The discussion of sikidy in this chapter is drawn from my more detailed report in

‘‘Malagasy Sikidy: A case in ethnomathematics,’’ Historia Mathematica, 24 (1997)
376–395. See that article for additional details, specific citations, and additional
references. For information about the training of diviners, the formal algorithms,
and the checking procedures, I relied, in particular, on La Divination malgache par
le Sikidy, Raymond Decary, Imprimerie Nationale: Librarie Orientaliste, Paul
Geuthner, Paris, 1970; Pratiques de divination à Madagascar: Technique du Sikily
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en pays Sakalava-Menabe, J.F. Rabedimy, Office de la Recherche Scientifique et
Technique Outre-Mer, Document No. 51, Paris, 1976; and ‘‘Divination among the
Sakalava of Madagascar,’’ Robert W. Sussman and Linda K. Sussman, pp. 271–291
in Extrasensory Ecology: Parapsychology and Anthropology, Joseph K. Long, ed.,
The Scarecrow Press, Metuchen, NJ, 1977.

6. The quotation from Boole is on p. 1857 in George Boole, ‘‘Mathematical analysis of
logic,’’ in The World of Mathematics, ed. James R. Newman, 4 vols, Simon &
Schuster, New York, 1956, vol. 3, pp. 1856–1858. This is an excerpt reprinted
from George Boole’s The Mathematical Analysis of Logic, Cambridge University
Press, Cambridge, 1847.

For a simple discussion of Boolean algebra and switching circuits, see, for exam-
ple, Thinking Machines, Irving Adler, New American Library, 1961 or Chapter 2 in
Mathematical Logic and Probability with Basic Programming, William S. Dorn,
Herbert J. Greenberg, and Sister Mary K. Keller, Prindle, Weber & Schmidt,
Boston, 1973. A brief discussion of Shannon’s work is on pp. 759–761 in Victor
J. Katz, A History of Mathematics, HarperCollins, New York, 1993. An example of
a text discussing the use of XOR in parity checking is Computer Engineering:
Hardware Design, M. Morris Mano, Prentice Hall, Englewood Cliffs, NJ, 1988.

7. There is another set of ‘‘three inseparables’’ that are not mentioned in the literature
as known to the Malagasy. They are C2 and C16, C11 and C13, and C12 and C15.

The directional associations of house placement and use are elaborated in ‘‘The
Sakalava house (Madagascar),’’ Gillian Feeley-Harnik, Anthropos, 75 (1980) 559–
585.

8. For discussions of the historical linkages between Arabic divination, sikidy, and
geomancy, see, in particular, ‘‘Astrology and writing in Madagascar,’’ by Maurice
Bloch, pp. 278–297 in Literacy in Traditional Societies,edited by Jack Goody,
Cambridge University Press, Cambridge, 1968; La divination arabe:Études, reli-
gieuses, sociologique et folkloriques sur le milieu natif de l’Islam, Toufic Fahd, E.J.
Brill, Leiden, 1966, pp. 196–205; Les Muselmans à Madagascar et aux Iles
Comores, Gabriel Ferrand, vol. 3, Publications de l’École des Lettres d’Alger,
1902; ‘‘L’introduction de la géomancie en Occident et le traducteur Hugo Sanccel-
liensis,’’ pp. 318–353 of vol. 4 of Mémoires scientifiques, Paul Tannery, Gauthier-
Villars, 1920; and the article preceding it in the same volume, ‘‘La géomancie chez
les Arabes’’ by Bernard Carra de Vaux, pp. 299–317. The spread of geomancy
throughout Europe is further discussed in Recherches sur une technique divinatoire:
la géomancie dans l’Occident médieval, Thérèse Charmasson, Centre de
Recherches D’Histoire et de Philologie, Librarie Droz, Geneva, 1980.

An analysis of the Arabic version is in Robert Jaulin’s La géomancie: analyse
formelle, Morton & Co., Paris, 1966. This includes mathematical notes by Fran-
çoise Dejean and Robert Ferry. I encourage readers of Jaulin’s book to also read
the critique of it by Marion B. Smith in ‘‘The nature of Islamic geomancy with a
critique of a structuralist’s approach,’’ Studia Islamica, 49 (1979) 5–38.

9. A major proponent of the belief that binary choices are fundamental to all human
thinking is Claude Lévi-Strauss. See, in particular, his book The Savage Mind,
University of Chicago Press, 1966, which is translated from the French La Pensée
sauvage, Librarie Plon, 1962.
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CHA P T E R 2

Marking Time

Calendars constructed by different human communities are fascinating
in their diversity. What makes them particularly interesting is that they
are cultural products often involving religion and/or politics combined
with observations of the physical universe. They reflect differing
concepts of time and impose different structures on time. Mathematical
ideas as fundamental as order, units, and cycles are the very building
blocks with which the structures are created. The particular structure
that we are taught as children becomes such an intimate part of our life
that it is hard to realize that many aspects of the structure are quite
arbitrary and that other peoples may perceive, organize, or measure
time differently.
The structuring of time can have many functions, some of which are

more or less important in different cultures. But everywhere, one of the
main functions is to set the schedule of the culture and, thereby, coor-
dinate the activities of individuals in the culture. Other functions may
be to relate the group’s activities to some natural phenomena or to some
supernatural phenomena. The structure may be used to order events in
the past or in the future, or to measure the duration of events, or to
measure how close or far they are from each other or from the present.
Above all, the structure provides a means of orientation and gives form
to the occurrence of events in the lives of individuals, as well as in the
culture. It provides a continuous and coherent framework in which to
mark periodically repeating events and in which to place special events.
As such, the structure imposed on time extends well beyond itself,
reflecting and affecting much in a culture.
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1 We begin our discussion of time structures with some astronom-
ical cycles that have widespread effects on the natural universe.

There is a light/dark cycle caused by differing amounts of sunlight
received on the earth due to the rotation of the earth on its axis.
Human beings can count the number of such cycles; they can arbitrarily
divide each cycle into parts; or they can arbitrarily associate groups of
cycles together. To count or subdivide the light/dark cycles, there must
be an arbitrary point designated as the end of one cycle and the begin-
ning of another.
Another cycle, quite visible to human beings, is the moon going

through various shapes in the sky as it makes one revolution around
the earth. Again, some arbitrary appearance can be called the beginning
of the cycle, and the cycles can be subdivided, counted, or grouped.
And, of course, the descriptors of the lunar cycle can be related, in some
way, to the descriptors of the light/dark cycle.
The third notable cycle is caused by the earth’s revolution around the

sun. This cycle is most noticeable from variations in the length of the
light/dark cycle, by patterned climatological changes, or by changes in
the behavior of flora and fauna. It, too, can be marked as a unit to be
counted, subdivided, or related with other like or unlike cycles.
It is significant that we cannot go further in discussing these cycles or

specific calendars without establishing some units. That is, we need
some structure, no matter how arbitrary, to use as a frame of reference.
For this, we introduce and use some basic Western units.
The light/dark cycle was standardized by Western physical scientists

into themean solar day (or simply day) whose length equals the lengths
of the light/dark cycles averaged over a full revolution of the earth
around the sun. Its starting point is designated as midnight. The day
is divided into twenty-four equal subunits called hours, which are made
up of sixty equal subunits called minutes,which, in turn, are made up of
sixty equal subunits called seconds. A lunation, the time from one full
moon to the next, does not neatly coincide with light/dark cycles or
with mean solar days. On average, in terms of the latter, one lunation
equals 29.531 days (29 days, 12 hours, 44 minutes). The tropical year,
based on the revolution of the earth around the sun, is specified as the
time it takes for the apparent sun to return to a particular reference point
in the sky. Again, this cycle and its length do not easily match the dark/
light cycles or the lunar cycles; its length is 365.2422 days (365 days, 5
hours, 48 minutes, 28 seconds) or 12.368 lunations.
Notice that the week has not appeared in the foregoing. That is
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through various shapes in the sky as it revolves around the earth. Again,
some arbitrary appearance can be called the beginning of the cycle, and
the cycles can be subdivided, counted, or grouped. And, of course, the
descriptors of the lunar cycle can be related, in some way, to the
descriptors of the light/dark cycle.

hours, 48 minutes, 46 seconds) or 12.368 lunations.
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because it is different in kind: the week has no intrinsic relationship to
any physical cycle; it is, instead, a completely arbitrary grouping of
some number of days. This difference is of considerable significance.
Whereas the calendric concerns of many cultures focus on physical
cycles, or often on the reconciliation of different physical cycles,
there are others for whom the dominant interest is the interaction of
abstract culturally constructed cycles.
In this chapter, we look at some calendars that involve astronomical

cycles and their reconciliation. We begin with two different calendars
from island groups in the southwestern Pacific–-the Trobriand Islanders
and the Kodi of Sumba Island. Then, we will look at the Jewish calen-
dar since it is concerned with reconciling the same astronomical cycles
but does so in a very different manner. The Jewish calendar, in addition,
includes an arbitrary 7-day cycle. In the next chapter, we turn our
attention to calendars dominated by arbitrary, abstract cycles.

2 The Trobriand Islands lie off the eastern coast of Papua New
Guinea (see Map 2.1). Over time, interaction with others has

modified the culture of the Trobriand Islanders. Here, however, using
the present tense, we discuss the culture of the Trobriand Islanders as it
existed in the first half of the twentieth century.
About 50% of the Islanders’ time is devoted to agricultural pursuits.

The planting and care of their gardens are a major focus of their lives.
Gardening is surrounded by many rites, and the neatness and aesthetics
of a garden are of asmuch concern as its yield. The garden cycle consists
of planting, fencing, weeding, harvesting, cutting, and burning the fields
to ready them for the next planting, and a period when no garden work is
done. The organization of gardening, that is, designating the beginning
of each activity, is a major concomitant of political power.
To the Trobriand Islanders, the moon is of particular importance.

Although their concern is with seasons, their calendar is based primar-
ily on lunar cycles. Without the light of the moon during the dark of
night, activities are confined to the home, but with moonlight, outdoor
activities are possible. Hence, the part of the lunar cycle around the full
moon is their major interest. The lunar cycle begins with the first
appearance of the moon. This phase, until the moon is overhead at
sunset, is ‘‘the unripe moon.’’ This is followed by ‘‘the high moon.’’
Starting on the tenth day, the days are specifically named. The days of
the full moon, what we would call the thirteenth, fourteenth, and
fifteenth, are the times for evening festivities with socializing, dancing,
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and gift-giving. Starting with the twenty-second day, it is ‘‘in the great
darkness,’’ and the days are again unnamed.
The Trobriand structuring of time is intimately related to gardening.

A year is a full garden cycle. The past year is literally ‘‘the time of the
past yam.’’ Also, to place an event some years ago, one recalls which
set of fields was planted and reconstructs the time passage based on a
cyclic pattern of field planting. There are 29 or 30 days in each of the
lunar cycles (we will call them months), and there are 12 or 13 months
in a Trobriand year. Most of the months are named, but which named
month it is differs in different locations within the Trobriands. What is
special about the calendar is how the names and number of months vary
from place to place and within a year.
The Trobriand yearly cycle has no specific point designated as its

beginning or end. However, we will call their month of Kuluwasasa the
last month because it is the month during which the harvest takes place,
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Map 2.1 Papua New Guinea and Indonesia
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and the elders meet to formally decide on plans for the community’s
activities during the next garden cycle. In terms of their staple crops,
the Trobriands form four different districts, which have different
harvest times. The month of Kuluwasasa, however, is always the
harvest time, and so it occurs first on the outlying island of Kitava,
next on the southern end of the main island of Kiriwina, then on the
northern end of Kiriwina, and finally on the island of Vakuta. The next
month name is Milamala. Since everyone knows that the months are
regionally offset and the way they are offset, people on the southern end
of Kiriwina might, for example, call their Kawal (which follows Mila-
mala) ‘‘Kitava’s Milamala’’ instead. Milamala is emphasized because it
is the month when the spirits of the departed visit their villages, and, at
the time of the full moon, when the spirits are expelled, there is a major
festival with much feasting and dancing. This festival also marks the
beginning of the burning phase of the garden cycle.
In order for a calendar based on the lunar cycle to stay in synchro-

nization with the seasons that are sun-related phenomena, there must be
a way to vary the number of lunar cycles per year so that most years
have twelve lunations, but every third year or so, there are thirteen.
(Recall that a tropical year equals 12.368 lunations.) The Trobriand
Islanders do that by using a method that demonstrates that valid calen-
dars need not involve precise mathematical calculations, extensive
record keeping, or elaborate astronomical knowledge. Their method
is to rely on the internal clock of a biological organism. A particular
marine annelid spawns just once each tropical year, at the time of a full
moon, in the sea off the island of Vakuta. If the worm, called milamala
by the Trobriand Islanders, does not appear at the full moon of Vakuta’s
month of Milamala, the festival is delayed, and the month is repeated–
that is, there is a second month of Milamala that causes that year to
have 13 months. Since the other regions have already had their Mila-
mala festivals and are already in a later phase of the garden cycle, for
them, the doubling up of a month occurs later but before the next
Milamala. Exactly when they add a month is not clear, perhaps, in
part, because referring to the months toward the end of the year by
name is not of major concern.
With or without a calendar, the round of seasons is evidenced by

periods of calm or heavy winds, rain, and dryness. The gardening
activities, so important to the Trobriand Islanders, must correlate
with these natural phenomena. But these alone do not determine
when events take place because the gardening cycle must also correlate
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with religious rites and festivals. When, for example, Vakuta’s Mila-
mala festival is deferred for a month, the people cooperate to speed up
the cleaning and burning part of the garden cycle so that it is sure to be
done by the end of the dry season. And even more significant, although
the regional gardening activities are asynchronous, the calendric struc-
turing of activities is maintained by having a calendar essentially made
up of a supracycle consisting of four almost identical subcycles offset
from each other by one month. Clearly, this calendar is not intended to
measure elapsed time or to assign a precise label to each past or future
day. It does, however, order and coordinate the activities of those
within the group as well as link the activities of the groups to natural
and supranatural phenomena.
At about the same latitude (108), but some 3200 km away, on the

island of Sumba in Indonesia, quite similar calendars are in use. They
are similar in focusing on lunar cycles with adjustment to remain
synchronized with the seasons. Since the cultures are different, the
events that make up the cycles of activities are also different. According
to the myths of the Kodi (a Sumba Island group of about 50,000
people), time units became noted and named only after their ancestors
arrived on the island. When their ancestors arrived, people lived a
continuous cycle; they were young, grew old, and then were young
again. The sun was close to the earth, and the moon was steady in
the sky. But a house was built to be taller than the rest, and the builder
asked the Creator to raise the sun to avoid burning his roof. The sun was
raised, but the price was periodic light and darkness. Two brothers,
trying to see whose spear could be thrown higher, hit the moon and
broke it. They threw the broken pieces of moon back into the sky at
sunset, and after that, the moon followed a cycle of waxing and waning.
With these divisions of time came mortality. Then time units became
noted and named because now time counted.
There is, then, the day/night cycle, but when counts between events

are made, the counts are of the number of intervening nights. The moon
is all important because it lights the darkness of the night. For the Kodi,
as for the Trobriand Islanders, with the full moon comes the time for
feasts, night dancing, and socializing. The lunar cycles are named and
noted, as are the two marked seasons: dry and rainy. Here, too, within
the gardening cycle are times of harvesting, burning the fields, planting
and weeding, and waiting for the crops to mature. The ritual cycle
includes ‘‘the bitter period’’ lasting about four months, during which
activities that might endanger the growth of the plants are prohibited:
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no children’s games, no making noise or music, no tattooing, and no
spearing pigs and buffalo. When these prohibitions are lifted, there is a
return to gaiety and romance and preparations for a major festival.
During the festival, thousands of riders in ceremonial clothes partici-
pate in fierce jousting competitions. But upon asking how to find out
about the structure holding all of these together, a Western visitor was
told by a Kodi elder to ‘‘…start with the sea worms. That is where we
start ourselves.’’
The highest ranking Kodi priest, the Rato Nale (Priest of the Sea

Worms) is responsible for the calendar. It is he who announces when
the bitter period ends and, a few weeks later, that people should start
preparations for the festivities because the worms will appear in seven
nights at the full moon. (These are the same marine annelids of the
Eunicid family, Leodice viridis, that appear on the Trobriand Islands.)
His announcement is based on his knowledge of the moon and seasonal
indicators in the environment. Here, as contrasted to the Trobriands, the
worms’ appearance is predicted rather than used as an after-the-fact
correction of the calendar. The intercalation of a month is probably
made by the Rato Nale toward the end of the dry season and before the
bitter period. At that time, the names of the months are not of much
interest; in fact, there is mention of a month that ‘‘has no name’’ and a
period of ‘‘forgetting the moon name.’’ With the Rato Nale’s announce-
ment of a festival ushering in the time of bitter sacrifices, month names
become specified and of interest. The role of the Rato Nale, however, is
more than ‘‘to count the days and measure the years.’’ He serves as an
exemplar of ritual discipline, and as such, he interacts with, and
controls, the natural and cultural phenomena that are synchronized
through the calendar. During the rainy season, after the crops are
planted, for example, he sits for more than a month relatively immobile
and concentrating. He cannot leave his house or enter the women’s part
of the house and special food must be prepared for him in a special area.
Were he to leave the house, extreme winds would blow and harm the
young plants, and were he to eat taboo foods, lightening would strike
the fields. Tidal waves would result if he did not coordinate certain
events. His behavior, in short, is part of what maintains the balance,
coherence, and unity that the calendar is intended to provide.
Severe problems have arisen since Indonesian independence from

colonial powers because Indonesian government officials want to
know when the festivals will occur. They insist on fixed dates in
the government calendar, specified well in advance. This depends

MARKING TIME

45

young plants, and were he to eat taboo foods, lightning would strike

Ascher, Marcia. Mathematics Elsewhere : An Exploration of Ideas Across Cultures, Princeton University Press, 2002. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/nyulibrary-ebooks/detail.action?docID=5675281.
Created from nyulibrary-ebooks on 2020-09-29 16:55:04.

C
op

yr
ig

ht
 ©

 2
00

2.
 P

rin
ce

to
n 

U
ni

ve
rs

ity
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



on formalized and regularized measures of elapsed time, which the
Kodi calendar does not include. Even if elapsed time between events
were a feature of the Kodi calendar, the translation from one time
structure to another would still be a far more complex problem than is
commonly realized.
The calendars of the Trobriand Islanders and of the Kodi are luni-

solar calendars; that is, they focus on lunar cycles but, with the aid of
the worms, remain in phase with the seasons and with the solar cycles.
Their reliance on the internal clock of the worm brings forcefully to our
attention the interplay of biological and astronomical phenomena. But,
even more so, it demonstrates a non-technical, but effective, means of
creating a luni-solar calendar.

3 We turn now to the Jewish calendar, another luni-solar calendar, in
which quite different techniques are used to reconcile the lunar and

solar cycles. In this case, the calendar is quite formal in structure;
explicit calculation rules are used to determine when each year and
month begins, and each day carries a specific label as to its place in the
month and year. Further, as an integral part of it, the Jewish calendar
has a 7-day cycle (week), and there is a designated starting point that
enables the years to be numbered and elapsed time to be measured.
Unlike the Trobriand Islanders and Kodi, the Jews are geographi-

cally and culturally diverse. While, historically (and perhaps even
currently for some of its communities), the calendar was related to
agricultural practices, through time, it has primarily become one of
the major unifiers of a broadly dispersed people. The calendar coordi-
nates their religious observances. It is intertwined with the Bible, which
sets forth the observances and, for many of the observances, specifies
when, as well as how, they should be carried out. The Jewish people are
described as the people of the Book; the calendar both operationalizes
and reinforces many aspects of the Book. For example, the annual
rereading of the Book–-when it begins, which portions to read, and
when it ends–-are all included in the schedule, which the calendar
structures. The stipulations that there be counting of years and labeling
of days and months, and that the calendar incorporate lunar cycles,
solar cycles, and the 7-day week, are found in the Bible. The details
of the calendar structure, however, were left to be worked out by
practitioners of the religion.
Up to about 1600 years ago, a designated group of Jewish elders,

called the Sanhedrin, annually set the specific configuration of each
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year. Their decision was sent by messengers to the widely dispersed
Jewish population. When the persecution of the Roman Emperor
Constantine interfered with these messengers, the Jewish scholar Hillel
II made the calculation rules public. Even though public, the rules were
not widely understood. Although there have been minor changes, the
calendar has remained essentially the same to this day.
The ritual day starts at sunset and ends with the appearance of three

stars on the following evening. However, for the purposes of calendric
calculations, a day consists of 24 equal hours, each of which consists of
1080 halakim, and the new day is said to begin at what we now call 6
p.m. A lunar cycle, as was previously noted, is just over 29.5 days. In
the units of this calendar, it is considered to be 29 days, 12 hours, and
793 halakim. Thus, months are set at either 29 or 30 days.
As with other luni-solar calendars, in order to stay in synchronization

with solar, as well as lunar, cycles, some years must have 12 months
and some 13 months. In the Jewish calendar, this leap year/non-leap
year pattern forms a 19-year cycle. The significance of 19 years is that
19 solar years < 235 lunations, or, more exactly, 235 lunations exceed
19 solar years by about 4.5 hours. Thus, 19 solar years are quite close to
19 lunar years when 12 of the lunar years have 12 months each, and
seven of them have 13 months each (12·12 1 7·13 ¼ 235). Within the
19-year cycle, the years that are leap years (that is, those with 13
months rather than 12) are the third, sixth, eighth, eleventh, fourteenth,
seventeenth, and nineteenth (see Figure 2.1). The starting point of the
calendar is at the beginning of a 19-year cycle, and so the place of a
year in the cycle is found by calculating the year number (mod 19), that
is, the remainder when the year number is divided by 19.
There are, however, just 12 month names (see Table 2.1). Although

the month of Tishri begins the year (around the autumnal equinox)
and Elul ends it, originally, Nisan (around the vernal equinox) was
referred to as the first month and Adar as the last month. Thus, as with
the Trobriand Islanders, the year was extended by repeating the name
of a month; the repeated month was the last in the yearly cycle. (When
two months of Adar are present, they are now sometimes distin-
guished by being called Adar I and Adar II. Clearly, it is Adar I
that is the inserted month as the religious observances that take
place annually in Adar are in Adar II. An example of an observance
in Adar is the festival of Purim which is on the 14th of Adar. The
number of festivals that fall at mid-month, the time of the full moon,
is also noteworthy.)
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Figure 2.1 The 19-year leap year cycle of the Jewish calendar. Leap years are shown
in boxed numbers. (Notice that the spacing in the cycle is symmetric with respect to
year 3. Moving in either direction, the spacing is 3, 2, 3, 3, 3, 2, 3.)

Table 2.1 Months in the Jewish calendar and the number of days

in each

Tishri 30

Heshvan 29 (or 30)

Kislev 30 (or 29)

Tevet 29

Shevat 30

[Adar 30 (this month is present only in leap years)]

Adar 29

Nisan 30

Iyyar 29

Sivan 30

Tammuz 29

Av 30

Elul 29
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Of fundamental importance to the Jewish calendar is the 7-day cycle.
The recognition of the Sabbath, the seventh day of the cycle, as a day of
no work devoted solely to religious and contemplative activities, is a
major tenet of the religion. It is of such importance that it appears as
part of the story of creation and is one of the ten commandments. The
idea of a 7-day unit probably was adapted from the Babylonians and
Assyrians during the period about 2500 years ago when the Jews lived
among them. But the concept of the Sabbath and its centrality were
added, and the Sabbath became crucial to the structure of the calendar.
The feature of the calendar that makes it appear quite complex and

which involves special rules is that the dates (month name and day
number within the month) of holidays are fixed, but the lengths of some
months and, hence, the lengths of the years are not. Here, the Sabbath
plays a crucial role. It constrains the days on which certain religious
dates may fall thereby becoming involved in the determination of the
start of the year and the number of days–-29 or 30–-in the months of
Heshvan and Kislev. Tishri 10, for example, cannot fall on a Friday or
Sunday, the days before or after the Sabbath. The day, called Yom
Kippur, is one of fasting and very important religious observances. If
it were to fall on a Friday, no food could be prepared for the Sabbath
and so it, too, would, de facto, become a day of fasting. Similarly, if it
fell on a Sunday, the fast would be extended through Monday because
no preparations were possible for two consecutive days. In addition,
Tishri 21 (Hoshanah Rabbah) cannot fall on the Sabbath; part of its
special observance requires carrying around some objects, which
contradicts a Sabbath prohibition. Combining these restrictions on
Tishri 10 and Tishri 21 means that the first day of the year, Tishri 1,
cannot be a Wednesday, Friday, or Sunday. This, of course, also means
that a year cannot end on a Tuesday, Thursday, or Sabbath. Thus, lunar
cycles, regular or leap years, and what the day is are intermingled in the
setting of Tishri 1. Then, the same considerations are used to set Tishri
1 for the following year. Once both are known, the month lengths are
adjusted to make one year end where the other begins.
According to Jewish belief, creation and the new moon of Tishri of

Year 1 were at 5 hours and 204 halakim after the start of a Monday.
(That corresponds to 11 minutes and 20 seconds after 11 p.m. on a
Sunday evening.) Hence, to find the day and time of the new moon
some years later, one adds to this start time the product of the number of
lunar cycles that have passed and the length of a lunar cycle. For
example, keeping leap years in mind, the first new moon of the year
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5755 is 302 full 19-year cycles plus 5 leap years plus 11 ordinary years
after the creation; that is:

302 ð235Þ1 5 ð13Þ1 11 ð12Þ ¼ 71; 167 lunar months later:

71; 167 lunar months

¼ 2; 099; 426 days1 12 hours1 56; 435; 431 halakim;

¼ 2; 101; 603 days1 19 hours1 31 halakim;

¼ 300; 229 weeks1 19 hours1 31 halakim:

Since only the day and time are being sought, full weeks can be disre-
garded. Adding 19 hours and 31 halakim to the day and time of crea-
tion, the result is 24 hours and 235 halakim after the start of a Monday
or 235 halakim after the start of a Tuesday. (That corresponds to just
after 6 p.m. on a Monday evening.)
The rules for setting the day of Tishri 1 for any year are:

Tishri 1 is the day of the new moon of Tishri except if:
(1) the day is a Wednesday, Friday, or Sunday; or
(2) the time of the new moon is 12 noon or later; or
(3) it is not a leap year and the new moon is a Tuesday at 104

halakim after 3 a.m. or later; or
(4) it is a year following a leap year and the new moon is on a

Monday at 589 halakim after 9 a.m. or later.
In these cases, Tishri 1 is on the following day unless that day is a
Wednesday, Friday, or Sunday, in which case, it is the day after
that. These rules are shown diagrammatically in Figure 2.2.

In our example of the year 5755, the new moon is just after the start
of Tuesday, which is affected by none of the above exceptions, and so
Tishri 1 is a Tuesday. To find the new moon of Tishri for 5756, since
5755 is a leap year, another 13 lunations [that is, 13 (29 days112
hours1793 halakim)] are added to the new moon time of 5755:

13 ð29 days1 12 hours1 793 halakimÞ
1235 halakim after the start of Tuesday

¼ 54 weeks1 5 days1 21 hours

1824 halakim after the start of Tuesday

¼ 21 hours1 824 halakim after the start of Sunday

¼ 824 halakim after 3 p:m: on Sunday:
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According to both the first and second conditions then, Tishri 1 of the
year 5756 is on a Monday.
Now that we know that the year 5755 is a leap year beginning on a

Tuesday and ending on a Sunday, we are finally ready to select the
length of the year and the number of days in Heshvan and Kislev. A
normal year is considered to be one in which Heshvan is 29 days and
Kislev is 30 days. To decrease the number of days in a year, Kislev also
becomes 29 days, and to increase it, Heshvan becomes 30 days. Hence,
a leap year can have 383 days (H¼ 29, K¼ 29), 384 days (H¼ 29, K¼
30), or 385 days (H¼ 30, K¼ 30) (see Table 2.2). To begin a year on a
Tuesday and end it on a Sunday, the choice must be the 384-day year
with H ¼ 29, K ¼ 30. If this were not a leap year, there would be the
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Figure 2.2 Finding the day of Tishri 1. Locate the new moon of Tishri on the outer
circle. Times are expressed in terms of days and hours from Saturday at 6 p.m. Where
there are parts of hours, they are measured in halakim. [For example: (0, 0, 0) is 6 p.m.
on Saturday; (0, 18, 0) is noon on Sunday; (4, 0, 0) is 6 p.m. on Wednesday; and (2, 9,
204) is 204 halakim–-about 11 minutes and 6 seconds–-after 3 a.m. on Tuesday.] The
inner circle shows the corresponding day for Tishri 1.
204) is 204 halakim—about 11 minutes and 20 seconds—after 3 a.m. on Tuesday.] The

Ascher, Marcia. Mathematics Elsewhere : An Exploration of Ideas Across Cultures, Princeton University Press, 2002. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/nyulibrary-ebooks/detail.action?docID=5675281.
Created from nyulibrary-ebooks on 2020-09-29 16:55:04.

C
op

yr
ig

ht
 ©

 2
00

2.
 P

rin
ce

to
n 

U
ni

ve
rs

ity
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



same considerations but with the choices being 353 days (H ¼ 29, K ¼
29), 354 days (H¼ 29, K¼ 30), or 355 days (H¼ 30, K¼ 30). Because
of the way in which the first days of each year are calculated, these
choices are sufficient to cover all possibilities. To demonstrate this, we
will use an ordinary year that begins on a Monday and show that it can
end only on a Thursday or Saturday, hence requiring either a year of
353 days or 355 days. Looking at the diagram based on the first day
rules (Figure 2.2), we observe that for the year to start on a Monday, the
days and times of the new moon must have fallen in the range from (6,
18, 0) to (1, 18, 0). The addition of an ordinary year (354 days, 8 hours,
876 halakim) brings the newmoon of the next year somewhere between
(4, 2, 876) and (6, 2, 876), which, again looking at the diagram, means
that it would be a Thursday or a Saturday.
Once the number of months in a year (12 or 13), the start day

(Monday, Tuesday, Thursday, or Saturday), and the number of days
in each of Heshvan and Kislev (29 or 30) have been determined, every-
thing necessary is known. All the days of religious observance and
festivities have their fixed calendar dates; that is, Tishri 1 is the New
Year, Tishri 10 is Yom Kippur, Tishri 21 is Hoshanah Rabbah, and so
on. They will fall when they should with respect to the Sabbath, the
moon, and the season. (A summary of the algorithm for determining the
specifics of year Y is in Appendix I of this chapter.)

4 With the foregoing examples in hand, let us pause and reflect on
some calendric issues. Calendars, in general, have operational and/

or intellectual levels; that is, for example, some calendars focus on
organizing ritual and agricultural activities, while others are also, or
instead, concerned with structuring the flow of historical events.
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Table 2.2 Year lengths in the Jewish calendar [the number of

days in the months of Heshvan (H) and Kislev (K) are also shown]

Leap years Regular years

383 ¼ 54 weeks 1 5 days

(H ¼ 29, K ¼ 29)

353 ¼ 50 weeks 1 3 days

(H ¼ 29, K ¼ 29)

384 ¼ 54 weeks 1 6 days

(H ¼ 29, K ¼ 30)

354 ¼ 50 weeks 1 4 days

(H ¼ 29, K ¼ 30)

385 ¼ 55 weeks

(H ¼ 30, K ¼ 30)

355 ¼ 50 weeks 1 5 days

(H ¼ 30, K ¼ 30)
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Another categorization is that calendar structures may incorporate
components that are environmental, and/or components that are related
to social structure, and/or components that have psychological conco-
mitants.
A major issue is whether people believe time to be cyclic or linear.

However, circularity and linearity are not necessarily mutually exclu-
sive; nor, if they exist together, does one have to be subordinate to the
other. Just as an automobile tire can rotate as the center of the hub
moves linearly forward with respect to a road, cycles of time can move
along lines. Or, points along a piece of thread can be thought of as in
linear order, but can be viewed simultaneously as cyclically related if
the thread is wrapped around a central spool. Also, where the belief is in
several cycles, the cycles can be independent, one within another, or
linked in some other way.
Some cultures integrate all calendric functions into one system,

while others keep them distinct. Overall, however, it is not only what
components or configurations are included, but how they are mixed and
matched. And since our primary interest is mathematical ideas, we
particularly note that calendars differ in their formality, public acces-
sibility, and whether or not they can be described with clear, algebra-
like algorithms.
In just the few calendars we have already examined, many of the

foregoing components are apparent. In all of the calendars, there have
been environmental and social components, including agricultural and
ritual structuring. The Jewish calendar differs from the other two by
incorporating a means of pinpointing historical events and measuring
elapsed time. Cycles dominate all of them, but the Jewish elapsed time
measure incorporates a linear aspect as well. The measure also implies
that time is continuous (there are nogaps in it) anduniform(the sizeof the
units does not change because they are at some time rather than another).
We have, thus far, focused only on luni-solar calendars. There are, of

course, many other types. The Muslim Hijra calendar, for example, is
solely lunar; that is, it marks the lunar cycles and remains in synchro-
nization with them. The Gregorian calendar (the official calendar of the
U.S.A. and of many other nation-states), however, is strictly solar,
marking and remaining in synchronization only with solar cycles.
(Although the Gregorian calendar has within it units referred to as
months, these are historical vestiges and do not coincide with lunar
cycles.) Both the Hijra and Gregorian calendars have a 7-day cycle
(week), but in each, the cycle is independent of the other aspects of
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the calendar structure rather than integrated with them. The Jewish,
Hijra, and Gregorian calendars are all formal, public, and algorithmic,
and each enables measuring elapsed time by virtue of having a specific
starting point, imposing units on the flow of time, and, thus, explicitly
and uniquely identifying each day and each instant within it. Because
they share these features, the Hijra, Jewish, and Gregorian calendars
can be translated, one from the other, but since the lengths of their
months and years differ, and their starting points differ, that translation
involves understanding, and working with, all their different structures.
Today, many people live under more than one calendar–-calendars

particular to their religious or cultural groups and calendars associated
with their nation-states. The domination of one group by another has
frequently been marked by the imposition of the dominator’s calendar.
In some cases, the indigenous calendar was completely replaced, in
others, it was modified, and in many cases, the two continued to exist
side by side. Evenwithin the same culture, new rulers often decreed new
or modified calendars to mark their coming to power or their adoption of
a new ideology. And the spread of commerce, travel, and communica-
tion ledmany people to adopt calendarsmorewidespread than their own,
to be used especially for purposes of external interactions.
Expressing one calendar in terms of another is a very difficult under-

taking, which, depending on the calendars, may not even be possible.
The calendars differ not only in detail but in underlying structures as
well. They differ in intent as well as in the activities they are meant to
coordinate. How to live with different calendars begins with under-
standing the structure and purposes of each and with understanding
that none is more advanced or more correct. Within one’s own life,
the actual challenge of living under multiple calendars is the challenge
of reconciling the different cultural priorities expressed in each.

Notes

1. The second, as described here, is 1/86,400 of the mean solar day. In 1967, the
General Conference on Weights and Measures, in order to establish a standard
independent of the precision of astronomical measurements, redefined the second
to be 19,192,631,770 periods of the radiation in the hyperfine transition of the
cesium-133 atom. This change represents a marked conceptual shift to a system
that is no longer astronomical. It is an excellent example of the way that ‘‘objective’’
standardization moves further and further from the daily experiential world. The
minute is now 60 of these atomic seconds, the hour 60 such minutes, and the day 24
of these hours. For specifics of the detailed issues involved, see the section ‘‘Time as
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systematized in modern scientific society,’’ pp. 668–673 in The New Encyclopedia
Britannica, vol. 28, Encyclopedia Britannica, Inc., Chicago, 15th edition, 1993.

2. My discussion of the Trobriand Islanders and their calendar is based on Bronislaw
Malinowski’s ‘‘Lunar and seasonal calendar in the Trobriands,’’ Journal of the
Royal Anthropological Institute of Great Britain and Ireland, 57 (1927) 203–215,
and his Coral Gardens and Their Magic, vol. 1, Indiana University Press, Bloo-
mington, IN, 1965 (original edition 1953); and on ‘‘The seasonal gardening calendar
of Kiriwina, Trobriand Islands,’’ Leo Austen, Oceania, 9 (1939) 237–253; and
‘‘Primitive calendars,’’ Edmund R. Leach, Oceania, 20 (1950) 245–262.

The book from which the Kodi information is adapted, Play of Time: Kodi
Perspectives on Calendars, History, and Exchange, Janet Hoskins, University of
California Press, Berkeley, CA, 1993, is particularly recommended. The phrases
quoted are from pages 80, 335, and 336.

3. The calendric stipulations in the Bible can be found, in particular, in Numbers 28 and
29,Deuteronomy16 andLeviticus 23. In these, the observance that is now considered
to start the new year is described as being on the first day of the seventhmonth. Here,
that is considered to be the first month. Since the months cycle, none of the relative
positions of other observances are modified. The only modification that has been
made to thebiblical stipulations is the startingpoint of the continuous cycleofmonths.
As it currently stands, the starting point of the annual cycle coincides with the time of
creation, and it begins the annual rereading of the Bible and a new year number.

Here, for the convenience of the reader, we use the day names Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday, Saturday (Sabbath), rather than the desig-
nations first day, second day…, seventh day (Sabbath), as in the Jewish calendar.
References to discussions of day names are in Note 1 of the next chapter.

For useful specific discussions of the Jewish calendar, see Jewish Calendar
Mystery Dispelled by George Zinberg, Vantage Press, New York, 1963 and V.V.
Tsybulsky’s Calendars of the Middle East Countries, U.S.S.R. Academy of
Sciences, Institute of Oriental Studies, Nauka Publishing House, Moscow, 1979.
The latter includes several other calendars such as the Muslim Hijra lunar calendar,
the Coptic–Egyptian calendar, the Iranian solar Hijra calendar, and several calen-
dars from Turkey. This book also has extensive tables for correlating calendars. An
excellent book, including the Jewish calendar and thirteen others is Calendrical
Calculations, Nachum Dershowitz and Edward M. Reingold, Cambridge University
Press, New York, 1997. The stated goal of the authors is unified, algorithmic
presentations suitable for LISP implementation. (The implementations are
included.) Their presentation is, of course, limited to calendars that can be described
in this way. For a fascinating historical note, see the article ‘‘Al-Khwārizmi on the
Jewish calendar,’’ E.S. Kennedy, Scripta Mathematica, 27 (1964) 55–59 which
sketches the contents of a ninth-century treatise by an Arabic scholar. The treatise
describes the rules of the Jewish calendar and calculations used. For a more general
discussion of the Jewish calendar and its history, see ‘‘Calendar, History of,’’ pp.
498–501, and ‘‘Calendar,’’ pp. 501–507 in The Jewish Encyclopedia, vol. 3, Isidore
Singer, ed., KTAV Publishing House, New York, 1964. An extensive bibliography
can be found in ‘‘Gregorian dates for the Jewish New Year,’’ Edward L. Cohen, pp.
79–90 in Proceedings of the Canadian Society for the History and Philosophy of
Mathematics–-22nd Annual Meeting, vol. 9, J.J. Tattersall, ed., 1996.
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4. For discussions of the Muslim Hijra lunar calendar, see Calendars of the Middle
East Countries and Calendrical Calculations, both cited in Note 3 above. For the
Gregorian calendar, see those books and also ‘‘Mathematics of the Gregorian calen-
dar,’’ V. Frederick Rickey, The Mathematical Intelligencer, 7 (1985) 53–56. Using
the dissociation of Easter from Passover as a case study, in ‘‘Easter and Passover: on
calendars and group identity,’’ American Sociological Review, 47 (1982) 284–289,
Eviatar Zerubavel examines the way groups use calendars to distinguish themselves
from other groups.
Some interesting theoretical discussions of calendars and time are ‘‘Lineal and

nonlineal codifications of reality,’’ Dorothy Lee, Psychosomatic Medicine, 12
(1950) 89–97; ‘‘Two essays concerning the symbolic representation of time,’’ pp.
124–136 in Rethinking Anthropology, Edmund R. Leach, Athlone Press, London,
1961; ‘‘Primitive time-reckoning as a symbolic system,’’ Daniel N. Maltz, Cornell
Journal of Social Relations, 3 (1968) 85–112; and ‘‘Theories of time,’’ Chapter 7,
pp. 147–156 in Time, Experience and Behaviour, J.E. Orme, Iliffe Books, London,
1969. Combining the theoretical with the specific are ‘‘Time and historical
consciousness: The case of Ilparakuyo Maasai,’’ Peter Rigby, pp. 201–241 in
Time: Histories and Ethnologies, Diane O. Hughes and Thomas R. Trautmann,
eds., University of Michigan Press, Ann Arbor, MI, 1995, and ‘‘Indian time,
European time,’’ Thomas R. Trautmann, pp. 167–197 in the same book. Cultures
and Time, Louis L. Gardet et al., UNESCO Press, Paris, 1976 is a collection of
articles on the empirical perception of time and the conceptions of time and of
history in India, among people of the Maghreb, in Jewish culture, in Chinese
thought, and in Bantu thought.

Appendix I. Summary of algorithm for year Y

Constants:
C¼ time of creation ¼ 5 hours1 204 halakim after start of Monday
L ¼ length of 1 lunation ¼ 29 days 1 12 hours 1 793 halakim
W ¼ length of 1 week ¼ 7 days ¼ 168 hours ¼ 181,440 halakim

Note: For calculations, a day starts at 6 p.m. on previous evening.

I. Determine if year Y is a leap year or a regular year.
Use r ¼ Y (mod 19) and Figure 2.1. Note that Y ¼ 19Q1 r where Q

is the number of full 19-year cycles since creation.

II. Find D, the day of Tishri 1 in year Y.
(a) Calculate N ¼ number of lunations since creation:

N ¼ 235Q1 13a1 12b

where a and b are the number of leap years and regular years respectively
since the start of the current 19-year cycle. (Note that a1 b ¼ r2 1.)
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(b) Calculate T, the day and time of the new moon of Tishri:

T ¼ C 1 LN ðmod WÞ:
(c) Find D by applying rules in Figure 2.2 to T.

III. Find D 0 the day of Tishri 1 in year Y 1 1.
(a) Calculate T 0, the day and time of the new moon of Tishri:
If year Y is a leap year,

T 0 ¼ T 1 13L ðmod WÞ;
If year Y is a regular year,

T 0 ¼ T 1 12L ðmod WÞ:
(b) Find D 0 by applying rules in Figure 2.2 to T 0.

IV. Find the length of year Y and the number of days in Heshvan and
Kislev.
Use D 0–D, whether year Y is a regular or leap year, and Table 2.2.

Example: Y ¼ 5755
I. 5755 ¼ 19·302 1 17; r ¼ 17, Q ¼ 302, year is a leap year.

II. (a) N ¼ 235(302) 1 13(5) 1 12(11) ¼ 71,167 lunar months.
(b) T ¼ (5 hours 1 204 halakim after start of Monday) 1 71,167

(29 days 1 12 hours 1 793 hal) [mod weeks] ¼ (5 hours 1 204
halakim after start of Monday) 1 300,229 weeks 1 19 hours 1 31
hal [mod weeks] ¼ 24 hours 1 235 halakim after start of Monday ¼
235 hal after start of Tuesday.

(c) D ¼ Tuesday

III. (a) T 0 ¼ T 1 13L (mod W) ¼ 235 hal after start of Tuesday 1 13
(29 days 1 12 hours 1 793 hal)[mod weeks] ¼ 54 weeks 1 5 days 1
21 hours 1 824 hal after start of Tuesday [mod weeks] ¼ 21 hours 1
824 hal after the start of Sunday ¼ 824 hal after 3 p.m. on Sunday.

(b) D 0 ¼ Monday

IV. D 0–D ¼Monday–Tuesday ¼ 6 days; year is leap year so length of
year ¼ 384 days and Heshvan ¼ 29 days, Kislev ¼ 30 days.

Result

Year 5755 begins at sunset on a Monday evening and has 13 months
with a total of 384 days; Heshvan and Kislev are 29 and 30 days,
respectively.
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CHA P T E R 3

Cycles of Time

In this chapter, we continue with calendars, but highlight a different
aspect, one that has been, and continues to be, of particular importance
to many peoples in the world. For many people, the crucial role of a
calendar is determining the quality of time. Knowing where a day is
situated in one or more cycles carries with it knowledge about how the
day is related to the culture’s cosmology, how to interpret the day, or
what to expect of the day.

1 Most people are familiar with the 7-day cycle, commonly referred
to as a week. It is a culturally established cycle, not determined by

some happening in the physical world. The broad spread of the 7-day
cycle is frequently attributed to its Babylonian origin, where it was
associated with the zodiac. Then, picked up and adapted by people
from India, it spread with their influence and the influence of the
Hindu religion. The Jewish people, upon leaving Babylonia reinter-
preted the 7-day cycle into a central tenet of their religion. As such,
it was passed on by them to the Christians and to the Muslims.
Together, these groups influenced a goodly number of cultures through-
out the world. Despite its ubiquity, a 7-day cycle is no more rational
than, say, a 6-day cycle or an 11-day cycle. And, just as a single
culturally determined cycle can be part of a calendar, so several such
cycles can be parts of a calendar. Within a particular culture, some
arbitrary cycle may, or may not, have developed from market cycles,
or visiting patterns, or numerous other human or non-human affairs.
None the less, once the cycles become part of a calendric structure, they
become abstract cycles, often interacting with other calendric cycles
and, yet, still resonating with other aspects of the culture.
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The mathematical ideas surrounding culturally determined cycles
differ from the ideas involved with physically derived cycles. The
central issue in the previous chapter was that the calendar remains
in synchronization with some aspect of the physical world. To this
end, leap months and/or leap days were added. The history of the
Gregorian calendar, for example, revolves around adjusting the
occurrence of leap days to better and better fit the solar cycles.
The problem stemmed from the fact that the length of the solar
cycle is not expressible as a whole number of days; the increasing
accuracy of scientific observation was linked to modifications in the
calendric computations. This issue does not arise with arbitrary,
abstract cycles that are created at will. For them, instead, the
issue is usually how to interrelate cycles made up of differing
numbers of days. The difference is what, in modern mathematical
terms, we might categorize as problems in pure mathematics versus
problems in applied mathematics.
Let us look first at correlating full-day cycles of different lengths. For

example, a cycle of 3 days (D1, D2, D3) and an independent cycle of 5
days (d1, d2, d3, d4, d5) will together form a supracycle of 15 days
since 3 £ 5 ¼ 15. Within this 15-day cycle, the 3-day cycle will repeat
five times, and the 5-day cycle will repeat three times, but any parti-
cular pairing of days will occur just once (see Figure 3.1). However, the
cycle of pairs for a 4-day cycle combined with a 6-day cycle is only a
12-day supracycle (see Figure 3.2), while combining a 3-day cycle with
a 6-day cycle leads only to a cycle of length 6 (see Figure 3.3). The
generalization is that the length of the supracycle is given by the least
common multiple (this is usually abbreviated to l.c.m.), that is, the
smallest integer that has each of the component cycle lengths as a
factor. For example,

l:c:m: ½3; 5# ¼ 15; 3 £ 5 ¼ 15; 5 £ 3 ¼ 15;

l:c:m: ½3; 6# ¼ 6; 3 £ 2 ¼ 6; 6 £ 1 ¼ 6;

l:c:m: ½4; 6# ¼ 12; 4 £ 3 ¼ 12; 6 £ 2 ¼ 12

where the integer underlined is the number of complete repetitions of
the component cycle.
Notice in Figures 3.1 and 3.2 how the component cycles interlock. In

the first, the length of the supracycle is the product of the lengths of the
two component cycles, while in the second, the length is smaller than
their product. And in Figure 3.3, the 3-day component cycle falls
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wholly within the 6-day cycle, and so, to contain them both, no addi-
tional cycle is created. The difference is that, in the first instance, the
component cycle lengths are relatively prime; that is, they contain no
common factors other than 1, while in the second instance, they are not
relatively prime since 2 is a factor of both 4 and 6. In the third case, one
component cycle length is a factor of the other; that is, one cycle length
is a divisor of the other. These principles can be extended to any
number of component cycles. For example:

l:c:m: ½3; 5; 7# ¼ 105; l:c:m: ½2; 3; 5; 10# ¼ 30;

l:c:m: ½3; 4; 6# ¼ 12; l:c:m: ½3; 6; 12# ¼ 12:

In the calendar of the Akan people, most of whom live in Ghana,
there is a 6-day week, a 7-day week, and a 42-day supracycle. When
counting the number of days in a cycle, the Akan count the same named
day as both the first and last day of the cycle. Hence, the 6-day week is
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Figure 3.2 The 12-day cycle composed of 4-day cycles and 6-day cycles. For pair-
ings, read down each column.

Figure 3.1 The 15-day cycle composed of 3-day cycles and 5-day cycles. For pair-
ings, read down each column.

Figure 3.3 The 6-day cycle composed of 3-day cycles and a 6-day cycle. For pair-
ings, read down each column.
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referred to as nanson, which is literally seven days, and the 7-day week
is nawotwe, literally eight days. Although the etymology of the word is
unclear to me, the supracycle is referred to as adaduanan, literally the
forty days. Another example is the Northern Thai calendar which has,
among other cycles, a cycle of 60 day-names formed by combining a
10-day name cycle with a 12-day name cycle. This cycle is widespread
throughout Southeast Asia as it is related to the 60-year name cycle in
the Chinese calendar. The 60 year names in the Chinese calendar are
formed from a cycle of 10 celestial stems with a cycle of 12 terrestrial
branches, the latter being different types of animals.
We will now examine in much more detail two calendars, each

involving several cycles. The calendars are quite dissimilar as are the
cultures they are from. To begin, we will look at the calendar of the
Maya of Mesoamerica and then turn to the Balinese of Indonesia.

2 The Mayan peoples have a complex cultural tradition extending
over millennia and encompassing different groups speaking about

25 different languages. The different groups shared much in the way
of culture, but, spread through time and space, they had different
centers and political organizations, some different ideas, and some
different practices. Scholars now place the beginnings of a distinctive
Mayan culture sometime around 1000 BCE. The period 200 CE to
1000 CE is generally referred to as the Classic period which is marked
by ceremonial centers with monumental architecture, a system of
writing, an elaborate astrological science, and numerous centers of
social, religious, economic, and political activities. The populations
and activities of these centers were interrelated by marriage networks
and by trade networks. During the Classic period, the Maya inhabited
what are now known as the eastern Mexican states of Chiapas,
Tabasco, Campeche, Quintano Roo, and Yucatan. They also extended
into Belize, Guatemala, and the western portions of Honduras and El
Salvador. Just prior to the Spanish conquest in the sixteenth century,
there were, spread out in this area, a number of independent yet
culturally interrelated enclaves, none of which were as grandiose as
during the earlier Classical period. Because, in part, these Mayan
groups were dispersed and independent, they did not succumb to
the Spanish as quickly and easily as did some other Amerindians,
such as the Incas. Today, primarily in Chiapas and in the highlands
of Guatemala, about two million people continue to follow many
Mayan traditions.
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Christopher Columbus, in 1502, is said to have been the first
European to encounter the Maya, and his brother, Bartholomew, was
the first to record their name. By mid-century, the Spanish were well
established in the area. At that time, remains of the Classic Maya period
were already overgrown, and so another ‘‘discovery’’—this time arche-
ological—took place, beginning in the mid-1800s. Thus, what we know
of the Maya, and in particular of their mathematical ideas, comes from
several different types of sources. There are, from the Classical period,
archeological materials, including thousands of inscribed stone monu-
ments called stelae. From the time between 1000 and 1500 CE, there
are four books, referred to as codices, the only ones remaining of the
thousands that were burned by the Spanish. And there are reports and
descriptions of traditions that continued and of some that are ongoing
through this century. Of primary importance is that the Maya had
written records kept by specially trained scribes. Their form of writing,
however, was modified by the superimposition of Spanish culture, and
so the pre-conquest forms require decipherment, which is still ongoing.
Throughout their history, a preoccupation with time pervades the

Maya culture. Time is considered to be cyclic. Supernatural forces
and beings are associated with, and influence, units of time. Cosmic
time and human time are interrelated, and events of the past, present,
and future are linked through the recurrence of named time units. There
are, indeed, not just one, but several, overlapping cycles, all of which
must be taken into consideration to give meaning to any particular time
unit. Although their calendric concerns extend to the incorporation of
astronomical phenomena, their primary focus was the interrelationship
of the arbitrary cycles they created and imposed on time. For this
reason, the Maya are said to have ‘‘mathematized’’ time and, through
it, their religion and cosmology.
The numbers 13 and 20 are both of great importance in Mayan

thought, and so cycles of these lengths are fundamental to their calen-
dar. Each day in each cycle is influenced by a god or, more specifically,
is a living god. The more concurrent cycles there are, the more gods
there are interacting on, and influencing, any particular day. With the
13-day cycle, the days are identified by numbers from 1 to 13, perhaps
corresponding to the thirteen sky gods. The gods of 4, 7, 9, and 13, for
example, are disposed kindly toward humans, while those of 2, 3, 5, and
10 are malign. Within the 20-day cycle, each day is identified by the
name of its god. The sounds of their names differ in the different Maya
languages, but they are conventionally transcribed from Yucatec, as
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shown in Table 3.1. As well as being the god of a particular day, Imix,
for example, is god of the earth, Kan is the corn god, Cimi is the god of
death, and Ahau is the sun. Since we will be concerned with the place of
the god-name in the 20-day cycle, we will instead refer to them as D1,
D2, …, D20.
Because 13 and 20 are relatively prime, the 13-day cycle and 20-day

cycle together form a 260-day supracycle. The name of the supracycle,
coined by contemporary scholars, is tolzin, aMayawordmeaning count-
ing of the days, or more commonly referred to as the Sacred Round.
Some scholars have attributed an astronomical or biological basis to the
260-day cycle (such as its closeness to the human gestation period,
which is 266 days). Others conclude, and I share their conclusion, that
it simply follows from the combination of its component cycles. Each of
the 260 days in the SacredRoundwill be referred to here as iDjwhere i is
the day number (1–13) and Dj is the god-name (D1–D20). Day 5D12
(5Eb), for example, is simultaneously the fifth day in the thirteen-
number cycle and the twelfth day in the 20-god-name cycle.
There are, however, additional cycles involved in fully identifying a

day. Another important cycle contains 365 days and is referred to by
some as the solar year and by others as the Vague Year. I prefer Vague
Year because, while the number of days may have been inspired by the
solar cycle, it became a cycle of fixed length without adjustments to
keep it in synchronization with the sun. The 365-day cycle contains a
360-day supracycle made up of a cycle of 20 numbers and a cycle of 18
named gods, plus 5 residual days.
The relationships of the 20 numbers and 18 names in this 360-day

supracycle differ from the relationship of the 13 numbers and 20 names

CHAPTER 3

64

Table 3.1 The gods in the 20-name cycle of the Sacred Round

(D1) Imix (D11) Chuen

(D2) Ik (D12) Eb

(D3) Akbal (D13) Ben

(D4) Kan (D14) Ix

(D5) Chicchan (D15) Men

(D6) Cimi (D16) Cib

(D7) Manik (D17) Caban

(D8) Lamat (D18) Eznab

(D9) Muluc (D19) Cauac

(D10) Oc (D20) Ahau
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that constitute the 260-day supracycle of the Sacred Round. As with the
days and months in the Gregorian calendar, where a full set of day
numbers is used before the month name advances, the 20-number cycle
is within the cycle of 18 names. If there were, for example, only three
numbers within five god names, an overall supracycle of length 15
would result as shown in Figure 3.4. When one cycle is within another,
the length of their supracycle is always the product of their lengths.
For the cycle of 18 gods in the Vague Year, the names are shown in

Table 3.2. Here again, to keep our focus on the order of the gods within
the cycle, wewill refer to them asAkwhere k¼ 1,…, 18. Thus, each day
within the Vague Year, except for the last five residual days, would be
mAk where m is the day number (1–20) and Ak is the god-name (A1–
A18). (The day number 20 was not actually used. Instead, there was
sometimes a figure that stood for end or final and, at other times, a figure
that referred to the seating of the next month. In transcriptions, the latter
is conventionally designated as 0 with the name of the next month. To
avoid implying the use of the numeral zero, and to keep our focus on the
order of the days in the cycle, we have referred to the last day number as
20. The residual days were labeled 1, 2, 3, 4, and, again, a figure indicat-
ing end, which we will call 5.)
The Vague Year (365 days) and the Sacred Round (260 days) are

combined by the Maya into the Calendar Round, a still larger cycle
incorporating them both. Its length is l.c.m. [260,365] ¼ 18,980 days,
which is equivalent to 52 Vague Years or 78 Sacred Rounds. Each day
within this larger cycle is identified by adjoining its subcycle identi-
fiers, namely, in our notation as iDj, mAk where i ¼ 1, …, 13; j ¼ 1,
…, 20; m ¼ 1, …, 20; k ¼ 1, …, 18. There are, however, also the
residual days. Thus, for example, looking at the 14 days near the end
of one arbitrary Vague Year and the beginning of the next, the days
would be:
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Figure 3.4 A 3-number (1, 2, 3) cycle within a 5-name cycle (A1, A2, A3, A4, A5).
For pairings, read down each column. (Compare this with Figure 3.1.)
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Last 8 days of an arbitrary Vague Year

1D4, 18A18
2D5, 19A18
3D6, 20A18
4D7, l
5D8, 2
6D9, 3
7D10, 4
8D11, 5

First 6 days of the next Vague Year

9D12, 1A1
10D13, 2A1
11D14, 3A1
12D15, 4A1
13D16, 5A1
1D17, 6A1

In the ceremonial centers of the Classic period, there were hundreds
of stelae erected to commemorate different events. To mark an event,
in addition to a Calendar Round date, another significant identifier was
a Long Count date. The Long Count date depended on yet another
cycle—the Great Cycle. A Great Cycle is based on a 360-day period
(a tun) consisting of 18 uinals of 20 days each. There is some spec-
ulation that this 360-day period arose as an early version of the solar
year or of the Vague Year. But, whether or not it did, the tun because
a distinct arbitrary cycle in and of itself. Twenty tuns are a katun; 20
katuns are a baktun; and 13 baktuns are a Great Cycle. A Long Count
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Table 3.2 The gods in the 18-name cycle of the vague year

(A1) Pop (A10) Yax

(A2) Uo (A11) Zac

(A3) Zip (A12) Ceh

(A4) Zotz (A13) Mac

(A5) Tzec (A14) Kankin

(A6) Xul (A15) Muan

(A7) Yaxkin (A16) Pax

(A8) Mol (A17) Kayab

(A9) Chen (A18) Cumku

year or of the Vague Year. But, whether or not it did, the tun became

Ascher, M. (2002). Mathematics elsewhere : An exploration of ideas across cultures. ProQuest Ebook Central <a
         onclick=window.open('http://ebookcentral.proquest.com','_blank') href='http://ebookcentral.proquest.com' target='_blank' style='cursor: pointer;'>http://ebookcentral.proquest.com</a>
Created from nyulibrary-ebooks on 2020-09-29 16:38:23.

C
op

yr
ig

ht
 ©

 2
00

2.
 P

rin
ce

to
n 

U
ni

ve
rs

ity
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



date is the number of days from the beginning of the then ongoing
Great Cycle.
An example of a Long Count date, transcribed into our numerals, is

9.0.19.2.4. From left to right, this reads ‘‘9 baktuns, 0 katuns, 19 tuns, 2
uinals, and 4 days.’’ To convert to our decimal system, starting at the
right, each position—with the exception of the third—is multiplied by
one higher power of 20. In the third position, an 18 is used instead.
Hence, the Classical Long Count date of 9.0.19.2.4 is interpreted as:

9·18·203 1 0·18·202 1 19·18·201 2·201 4

¼ 1;302;884 days

from the beginning of the Great Cycle which started on the Calendar
Round date of 4D20, 8A18 (4 Ahau 8 Cumku).
What is most significant about a Great Cycle is that it is anchored at a

starting point and, so, enables the pinpointing of historical events and the
measurement of elapsed time. As such, it adds measures that are usually
associated with linearity. In mathematical terms, we could say that just
as any segment of the circumference of a circle of infinite radius can be
thought of as a straight line, a Great Cycle (consisting of 1,872,000 days)
is a cycle so large that it enables linear-like measures.
Numbers of elapsed days, as well as dates, appeared on stelae in

Long Count form. When used as statements of elapsed days, the
numbers can take on values greater than the number of days in a single
Great Cycle. In Long Count numbers, just as 20 tuns make up a katun
and 20 katuns make up a baktun, so, in general, each additional position
introduces another multiple of 20. These Long Count numbers are
associated with Maya computations that are projections into the past
or into the future and which dovetail the different calendric cycles. For
instance, one inscription, commemorating the enthronement of a ruler,
gives the Calendar Round dates of his birth and his enthronement, as
well as of the enthronement of an earlier, somehow related, ruler or
deity. The number of days elapsed since the enthronement of the deity,
given in Long Count form, is 7.18.2.9.2.12.1 days. Hence, given one
Calendar Round date, a Calendar Round date some 1.25 million years
(455,393,761 days) earlier was calculated, or, given two Calendar
Round dates, their Long Count difference was calculated.
There were other cycles used on the stelae to mark events, and

numerous other complex calculations, particularly in the Mayan
codices of the eleventh century CE. However, we will remain focused
on the Classical period and further examine the mathematical ideas
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evidenced by the stelae and the cycles already introduced. Just these
cycles provide ample evidence that the Mayan calendrical ideas inti-
mately related human affairs with temporal cycles, and the interplay of
the cycles was of paramount importance. When dealing with cycles,
however, the mathematical ideas involved in calculations of elapsed
time need further elaboration to be fully appreciated.
Because the stelae are marked by both Calendar Round dates (which

are made up of Sacred Round and Vague Year dates) and Long Count
dates, there are several aspects to elapsed time calculations. They are:

A. Adding (or subtracting) N days to a Calendar Round date:
1. Adding N days to a date in the Sacred Round;
2. Adding N days to a date in the Vague Year;
3. Subtracting N days from a date in the Sacred Round or Vague

Year;
B. Adding (or subtracting) N days to a Long Count date;
C. Finding the number of days, N, between two Long Count dates;

and
D. Finding the number of days, N, between two Calendar Round

dates.

As we examine these, in turn, it is important to keep in mind that
although dates include numbers, dates and numbers are different kinds
of things. In the more familiar Gregorian system, for example, 9/4/91
is a date, while 211 is a number. None the less, they can be combined;
adding 211 days to the date 9/4/91 results in another date (4/29/92).
The calculations will, of necessity, contain detailed steps and even
some theorems. If you are wary of these, you may scan the rest of this
section and still be able to fully rejoin us in Section 3.

A. Addition (or subtraction) of N days to a Calendar Round date
1. To add N days to a Sacred Round date iDj (i ¼ 1, …, 13; j ¼ 1, …,

20), the cycles that constitute it are advanced independently. That is,

iDj1N days ¼ ði1 NÞ ðmod 13Þ Dðj1 NÞ:
For example:

5D71 97 days ¼ 102 ðmod 13Þ D104 ðmod 20Þ ¼ 11D4:

5D71 16 days ¼ 21 ðmod 13Þ D23 ðmod 20Þ ¼ 8D3:
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2. Adding N days to a vague year date mAk (m ¼ 1, …, 20; k ¼ 1, …,
18) proceeds differently because, rather than being independent, one
of the two cycles is inside the other and, in addition, there are the five
residual days. The date is first converted to its number of days from
the start of the year, and then N is added to that number. (This is
analogous to adding, say, 40 days to February 15 by first converting
February 15 to 46 days from the start of the year and then adding 40.)
The result,

N 0 ¼ ½20 ðk2 1Þ1 m1 N# mod 365;

must then be reconverted to date form. If N 0 is less than or equal to
360, the resulting date m 0Ak 0 is:

m 0 ¼ N 0 ðmod 20Þ and k 0 ¼ ðN 0 2 m 0 1 20Þ=20:
If N 0 is greater than 360, the excess above 360 is the number of the
residual day.
For example:

4A101 97 days : N 0 ¼ ð1801 41 97Þ ðmod 365Þ ¼ 281;

m 0¼ 281 ðmod 20Þ ¼ 1 ;

k 0 ¼ ð2812 11 20Þ=20 ¼ 15;

Result : 1A15:

4A101 543 days : N 0 ¼ ð1801 41 543Þ ðmod 365Þ ¼ 362;

Result: residual day 2:

3. Subtractions of N days from a Sacred Round date or from a Vague
Year date proceed, as do the additions of N days just described in A.1
and A.2. They involve, however, an additional modular relationship,
namely

2a ðmod bÞ ¼ ðb2 aÞ ðmod bÞ:
That is, for example, 25 (mod 7) ¼ 2 (mod 7).

Examples of subtractions are:

5D72 97 ¼292 ðmod 13Þ D ð290Þ mod 20

¼ 21 ðmod 13Þ D ð210Þ mod 20 ¼ 12D10:

4A102 196 ¼ 212 ðmod 365Þ ¼ 353 resulting in 13A18:
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The order and form of these calculations are mine. No one knows
how the Maya actually did them. Notice, for example, that here, the
arithmetic is being done in the decimal system rather than in the Maya
base twenty system, and N was assumed to be a decimal number rather
than in Long Count difference form. If N were in Long Count form, we
could first convert it to decimal form and then proceed as above. The
conversion would be done as follows:

Long Count a5:a4:a3:a2:a1 ¼ ð½ða5·201 a4Þ201 a3# 181 a2Þ 20

1 a1 decimal:

The Long Count number form was used by the Maya only for calend-
rics and is not, in general, the form of Maya numbers. Maya numbers
are strictly base twenty; that is, each consecutive position is valued at
one higher power of twenty, with no intrusive value of eighteen
involved.

B. Adding (or subtracting) a Long Count number of days, N, to a Long
Count date
In this form, in each position, except for the second position from the
right, numbers can go as high as 19. When adding, if the sum of two
numbers in a position is 20 or greater, the amount above 20 is recorded,
and a one is carried to the next column. In the second position, the
number can only go as high as 17. When the sum is greater than or
equal to 18, the excess above 18 is recorded and a one carried to the
next column.

Example : 5: 3: 9: 15: 1

16: 12: 14: 10: 3

11: 16: 4: 7: 4

ðdateÞ
ðnumberÞ
ðdateÞ

Subtraction is similar except that one borrows from an adjacent column
rather than adding a carry to it.

Example : 7: 8: 3: 14: 2

26: 12: 14: 10: 3

15: 9: 3: 19

ðdateÞ
ðnumberÞ
ðdateÞ
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Example : 7: 8: 12: 3: 5

23: 9: 11: 10: 4

3: 19: 0: 11: 1

ðdateÞ
ðnumberÞ
ðdateÞ

C. Finding the Long Count number of days, N, between two Long Count
dates
This calculation proceeds exactly as did the subtraction just above. The
only difference is that a date is being subtracted from a date, and the
result is a number.

D. Finding the number of days, N, between two Calendar Round dates
Once again, we use decimal numbers and decimal arithmetic as we did
when working with Calendar Round dates in part A. Because the dates
are composites of several cycles and are not anchored to a single
temporal starting point, they again involve the arithmetic of cycles,
which is conceptually different from, and, for us, more difficult than
the arithmetic of linear measures. Suppose that the problem is to find N,
the number of days between 12D8, 6A2 and 5D4, 12A17 assuming that
the latter comes later. (Such an assumption must be added because each
Calendar Round date reoccurs every 18,980 days, and so each of the
two dates is both before and after the other!) For the Sacred Round
portion of the dates, an N is needed, which simultaneously satisfies the
difference in the day numbers and the difference in the god-names. That
is, it must satisfy both N ¼ (5212) mod 13 and N ¼ (428) mod 20.
And, for the Vague Year portion, an N is needed satisfying the differ-
ence of the numbers of days in that cycle: N ¼ [(1722) 20 1 (1226)]
mod 365. Thus, simplifying these, a single N must simultaneously
satisfy the three conditions

N ¼ 6 ðmod 13Þ; N ¼ 16 ðmod 20Þ; and N ¼ 306 ðmod 365Þ:
For each condition individually, there are an infinite number of solu-
tions:

N ¼ 6; 19; 32; 45; … for the first;

N ¼ 16; 36; 56; 76; … for the second; and

N ¼ 306; 671; 1036; 1401; … for the third:

The simultaneous solution must be a number appearing on all three of
these lists. There are, however, an infinite number of such numbers, just
as there are an infinite number of answers to the question, ‘‘How many
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months beyondApril isMay?’’ The answers could be 1, 13, 25, 37, and so
on; that is, 1 1 12Q where Q is any integer. The question can be made
more precise by specifying the solution to be the smallest number, but
none the less, finding that smallest N is still a difficult problem.
In modern mathematics, the problem is deemed ‘‘solving a system of

linear congruences expressible as x¼ ai (modmi) where i¼ 1,…, n.’’ Its
modern solution is attributed to Carl F. Gauss, a Germanmathematician,
in 1801, but it has long been recognized that a complete method of
solution existed in China in the thirteenth century. In fact, many modern
mathematics texts refer to the problem as ‘‘The Chinese Remainder
Problem,’’ or even to its modern solution as ‘‘The Chinese Remainder
Theorem.’’ Further, the Chinese work containing the solution included
calendric problems of the type being discussed here. Additionally, there
are statements of such problems in both China and India as early as the
fifth century. Thus, we see that while these cultures had calendars differ-
ent from each other, and different from theMaya, all shared a concern for
concurrent cycles and posed questions and sought solutions to problems
associated with them. We do not know how the Maya solved these
problems. Nevertheless, we do know that they did solve them. And we
also know that within the scribal class, there were highly trained specia-
lists who dealt with issues relating to calendrics.
The modern mathematical solution will be detailed here, although it

is surely not the way the Maya handled the problem. In our example
above, the problem was recast to finding N satisfying:

N ¼ 16 ðmod 20Þ ¼ 6 ðmod 13Þ ¼ 306 ðmod 365Þ:
A difficulty is that 20 and 365 share a common factor, and so we must

begin by rewriting them in a form that eliminates that commonality. In
general, for b and c with no shared factors:

a ðmod bcÞ ¼ a ðmod bÞ ¼ a ðmod cÞ:
Hence, since 20 ¼ 4·5 and 365 ¼ 73·5,

16 ðmod 20Þ ¼ 16 ðmod 4Þ ¼ 0 ðmod 4Þ ¼ 16 ðmod 5Þ
¼ 1 ðmod 5Þ;

and

306 ðmod 365Þ ¼ 306 ðmod 73Þ
¼ 14 ðmod 73Þ ¼ 306 ðmod 5Þ ¼ 1 ðmod 5Þ:
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The problem, therefore, can be restated as to find N satisfying:

N ¼ 0 ðmod 4Þ ¼ 1 ðmod 5Þ ¼ 6 ðmod 13Þ ¼ 14 ðmod 73Þ:
The difficulty of common factors has been eliminated, but in so doing,
the number of simultaneous conditions was increased.

Step 1:

N ¼ 0 ðmod 4Þ ¼ 01 4p for some integer p: ð1Þ

Also; N ¼ 1 ðmod 5Þ so 4p ¼ 1 ðmod 5Þ: ð2Þ

Step 2: To solve (2) for p, Euler’s theorem can be used. It states that
for k and m relatively prime, if kp ¼ c (mod m), then p ¼ ckw(m)21 (mod
m) where w(m) is the number of integers less than or equal to m that are
relatively prime to m. In this case, that means p ¼ 1 (4)w(5)21 (mod 5).
Since the integers less than or equal to 5 and relatively prime to 5 are 1,
2, 3, 4, w(5) ¼ 4.
Hence,

p ¼ 1ð4Þ3 ðmod 5Þ ¼ 64 ðmod 5Þ ¼ 4 ðmod 5Þ

¼ 41 5b for some integer b: ð3Þ
[Alternately, if possible, we can solve by observation. For 4p¼ 1 (mod
5), we observe that 1 (mod 5)¼ 16 (mod 5) and so easily solve 4p¼ 16
(mod 5) which gives p ¼ 4 (mod 5), as does Euler’s theorem.]

Step 3: Combining (1) and (3),

N ¼ 4p ¼ 4 ð41 5bÞ ¼ 161 20b: ð4Þ
Combining (4) with N ¼ 6 (mod 13),

6 ðmod 13Þ ¼ 161 20b

and so

210 ðmod 13Þ ¼ 3 ðmod 13Þ ¼ 20b: ð5Þ
Step 4: To solve (5) for b, once again, Euler’s theorem is used. Here,

the result is
b¼ 3 ð20Þwð13Þ21 ðmod 13Þ where wð13Þ ¼ 12;

b ¼ 3 ð20Þ11 ðmod 13Þ ¼ 6 ðmod 13Þ ¼ 61 13c for some integer c:

ð6Þ
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Step 5: Combining (4) and (6)

N ¼ 161 20b ¼ 161 20 ð61 13cÞ: ð7Þ
Combining (7) with N ¼ 14 (mod 73),

14 ðmod 73Þ ¼ 1361 260c

and so

2 122 ðmod 73Þ ¼ 24 ðmod 73Þ ¼ 260c: ð8Þ

Step 6: To solve (8) for c, we will use observation instead of Euler’s
theorem. For 260c ¼ 24 (mod 73), observe that 24 (mod 73) ¼ 14,040
(mod 73) and so solve 260c ¼ 14,040 (mod 73), which gives c ¼ 54.

Step 7: Substituting c ¼ 54 into (8), N ¼ 14176.

From the modern formulation of the solution of simultaneous linear
congruences, an interesting insight is gained into the structure of the
Mayan calendar. One modern theorem states that the problem

x ¼ ai ðmod miÞ i ¼ 1; …; n

as a solution if and only if for each pair i, j, where 1 # i , j , n, the
greatest common divisor of mi and mj evenly divides (ai 2aj). This tells
us that, for example, the problem of finding the number of days between
4D20, 8A18 and 12D12, 8A11 has no solution. That is, both cannot be
valid dates in the Mayan calendar! Because we know 4D20, 8A18 to be
a valid date, namely the start date of a Great Cycle, the date 12D12,
8A11 must be invalid. Clearly, when assigning dates to events in the
past or future, the Maya would have had to have some way to assure
that only valid dates were created.

3 This discussion gives only a taste of the Maya involvement with
calendrics. Leaving aside the considerable evidence from the

codices that links calendars, mathematical ideas, and astronomical
knowledge, we now continue with our primary concern in this chap-
ter—the widespread, but diverse, use of arbitrary abstract cycles in the
creation of calendars and in conceptions of time. We move to another
area of the world and another culture. In our next example, a calendar
from Bali, there are also cycles within cycles and cycles superimposed
on cycles, but just as the cultures are different, juxtaposition of the
cycles is different, the surrounding beliefs are different, and the asso-
ciated mathematical ideas are different.
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4 The island of Bali is just east of Java, separated from it by a narrow
strait (see Map 1 in Chapter 2). Both are part of Indonesia, which

consists of about 13,000 islands spread for 6400 km along the imagin-
ary line that we call the equator. About 6000 of the islands are named
and about 1000 permanently settled. The overall population of Indo-
nesia is about 180 million people. Of these, some two million live on
Bali. Indonesia has been one nation since 1949, but its people and their
cultures and histories are quite diverse. The Kodi, whose calendar was
discussed in the previous chapter, also live in Indonesia, on the island
of Sumba some 500 km west of Bali; their culture and their calendar are
decidedly different.
The island of Bali has an area of about 5000 sq. km.Mountains as high

as 3140 m on the northern side of the island slope down to the sea on its
southern side. For more than 1000 years, and still during the twentieth
century, the majority of the people were engaged in wet rice cultivation,
living in villages made up of compounds enclosed by clay walls.
Bamboo, coconut, and banana trees are planted within the compounds,
while outside of the walls are the surrounding wet rice fields. The social
and religious organizations and activities of the villages are intertwined
with the planting and irrigating of the fields. A primary function of the
groups and their activities is to assure thewell-being of the inhabitants by
maintaining cosmic balance. So doing involves the people in theworship
of divine powers via the care andmaintenance of the temples, the giving
of offerings, and by participation in festivals and ceremonies.
Balinese culture is now a blend of a variety of influences. Specula-

tion on the place of origin of the modern indigenous population
includes Taiwan, off the east coast of China; Southwest China; and
India; all prior to 1000 BCE. There is evidence of early trade with
other islands and with mainland Southeast Asia. There was decided
influence of Indian culture and the Hindu religion prior to 1000 CE, and
of Javanese culture and Islam in about 1200 CE. Then, beginning in the
sixteenth century, with the coming of the Portuguese and then the
Dutch, there was European and Christian influence. As a result of the
blending, there are now a number of distinct calendars existing simul-
taneously on Bali with some events scheduled or measured in one and
some in another.
Here, we are concerned only with the calendar called the Javanese–

Balinese calendar. As contrasted to other calendars on Bali, this calen-
dar involves no lunar or solar cycles, and its purpose is not the measure-
ment of elapsed time.
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In Balinese cosmology, the world in which people live—the Middle
World—is between the Upper World of the gods and the Lower World
of the demons. The Upper and Lower worlds control cycles of growth
and decay, which intersect in the Middle World, resulting in the life
cycles and life processes of all living things. Thus, nature, the physical
universe, and the lives of human beings, all of which occur in the
Middle World, are shaped by forces outside of themselves, and those
forces are cyclic. Hence, the structure of the calendar reflects that each
day is part of many cycles, and the purpose of the calendar is to
properly present the multiplicity of intersections that characterize
each day. Where a day falls in each of the cycles individually and in
the cycles in combination determine what should be done or avoided,
whether it is lucky or unlucky, which gods are involved, which obliga-
tions are required, or, in short, the personal, religious, and cultural
significance of the day.
The Javanese–Balinese calendar contains ten different arbitrary

cycles, which are usually referred to as ten different length weeks;
there is a 10-day week, a 9-day week, an 8-day week, a 7-day week,
and so on, down to a 1-day week. A year in this calendar, that is, a full
supracycle of all of these, has 210 days. There are evenly within the
year twenty-one 10-day weeks, thirty 7-day weeks, thirty-five 6-day
weeks, forty-two 5-day weeks, seventy 3-day weeks, one hundred and
five 2-day weeks, and two hundred and ten 1-day weeks. That is, 210¼
1·2·3·5·7 and so is divisible by these factors and their products. In order
to fit into the year, special adjustments are used for weeks of length 4, 8,
and 9. Just as leap days, or even leap months, are added periodically
into calendars that were discussed in the previous chapter, here some
specific days are repeated in particular weeks once each year. Were it
not for these adjustments, a grand cycle containing all the cycles evenly
would have to be far larger than 210 days; its length would have to be
divisible by 8, 9, 5, and 7 rather than just by 2, 3, 5, and 7, and so it
would be 2520 days.
Just as every day in the Gregorian 7-day week has a different name,

every day in each of the Balinese weeks has a different name. Hence,
each day has 10 different names. In all, since there are ten names in the
10-day cycle, nine in the 9-day cycle, and so on, there are 101 91 81
7 1 ··· 1 1 ¼ 55 different day-names. For simplicity, and to highlight
their cyclic positions, we will use the names in where n is the week
length, and, starting with some arbitrary day, i is the day of the cycle,
where i ¼ 1, …, n. For example, for the Gregorian week, arbitrarily
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starting with Sunday, Wednesday would be 47; that is, the 4th day of a
7-day cycle. Since each of the days in the Javanese–Balinese year has
ten names, to be fully identified, a day must have ten such identifiers—
for example (11, 22, 33, 14, 15, 66, 37, 18, 39, 610).
In addition to determining major cultural festivals and ceremonies

and activities particular to each temple, the calendar is intimately
linked to the personal identity of each individual. For example, the
day within the 8-day cycle on which a child is born is a clue to the
child’s identity in a former incarnation. The day of birth in the 5-day
and 7-day cycles determines the offerings that need to be made to pay
the child’s debts to beings in the spirit world. Throughout the child’s
first year, there are important ceremonies on auspicious days. For the
first 42 days (that is, six 7-day weeks or seven 6-day weeks), the mother
and child are considered impure. The ceremony on the 42nd day
removes the impurities. For the first 105 days (that is, three 35-day
supracycles), the child is vulnerable to witches or sorcerers, and the
ceremony on the 105th day protects the child and increases its strength.
At the end of its first year, that is, on the 210th day, the child’s hair is
first cut. Only after that may the child’s feet touch the ground; until
then, it is carried wherever it goes. Further, identifying a person by
place within cycles is also seen in birth-order and generational-order
cycles. Each child is named according to a four-name cycle so that a
family’s fifth child is given the same name as the first, the sixth as the
second, and so on. In kin terminology, four generations are named with
the fifth returning to the same name as the first. As a result, for example,
when making offerings at a family’s ancestral shrine, a child is told not
to pray to the parents’ great-grandparents as they are in the same
generation as is the child.
In general, extreme importance is attached to where a day falls in the

conjunction of the 5-day and 7-day weeks. The 35-day supracycle
containing all of their intersections is often pictorially represented.
The representation, called a plintangan calendar, contains a five-row
by seven-column array of symbolic scenes bordered above by gods,
trees, and birds, and below by demons and animals. The resulting
configuration is, therefore, seven rows by seven columns, also some-
times seen as separate representations containing individual columns of
seven rows each.
Another important calendric artifact, called a tika, represents the

structure of the year and marks particularly important communal
days within it. The tika are colorful objects; some found in museums
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are painted or carved on wood, and those now commonly available are
printed on paper. Although, perhaps, in earlier times, their ownership
was restricted to specialists in calendric interpretation, tika are now
sold in public markets.
The tika is arranged as a rectangle of seven rows and thirty columns.

Thus, it emphasizes the 7-day week and also highlights that there are 30
such weeks. Each 7-day week is called a wuku, and together, the 30
weeks are referred to as the wuku year. And just as each of the 7 days
has a unique name, each wuku has a different name. Hence, knowing the
day in the 7-day week (row) and also the wuku in the 30-week cycle
(column), a day can be located on the tika, and where the day stands in
every cycle can then be read from it. In order for us to read the tika,
however, the symbols used on it must be examined more closely. Here,
two tika are shown: a wooden one, at least 100 years old, from amuseum
collection (Figure 3.5); and a common paper version (Figure 3.6).
Figure 3.6, which we examine first, has six different symbols, each

used to mark a particular day in one of the cycles. Figure 3.7 shows the
numerical identifiers we associate with each symbol. It is important,
however, to keep in mind that although the days are ordered within the
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Figure 3.5 A carved wooden tika.

Figure 3.6 A paper tika.
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cycles, the cycles are continuous, and it is we, not the Balinese, who are
highlighting the structure of the calendar by using numerical identifiers
in place of the 55 day-names.
Since two 4-day cycles are evenly contained within an 8-day cycle,

and two 2-day cycles are within a 4-day cycle, we observe that

i8 ¼ i ðmod 4Þ4 and i4 ¼ i ðmod 2Þ2: ð9Þ
Four and eight, however, do not evenly divide 210. To make these
cycles conform to the year, at a particular point in the year, there are
three consecutive days called 78. That is, since 210 (mod 8) ¼ 2, two
days called 78 are added to the twenty-six complete 8-day cycles.
Similarly, 210 (mod 4)¼ 2, and so two additional days are also needed
to reconcile the 4-day weeks with the year. This, too, is taken care of by
the two inserted days just described, since days called 78 are also called
34. As a result, despite the insertion, the alignment of names in the 2-, 4-,
and 8-day cycles remains unchanged!
Another cycle that does not fit neatly is the 9-day cycle: 210 (mod

9)¼ 3. For that, a similar insertion is made but at a different point in the
year. At that point, day-name 19 is repeated consecutively four times.
The 3-day week names, however, remain unmodified, and so the three
inserted days are an exception to the 3-day and 9-day name cycle
alignment, while the 3-day and 6-day alignment remains unchanged
as do the 2-day and 6-day alignment. That is, although, in general
throughout the year,

i9 ¼ i ðmod 3Þ3; ð10Þ
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Figure 3.7 Symbols on tika in Figure 3.6 with numerical identifier equivalents.
(Note: each 38 and 78 is also a 34; each 66 is also a 33.)
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at this insertion point, the relationship does not hold. The four conse-
cutive days are

19¼ 13; 19¼ 23; 19¼ 33; and 19¼ 13:

However, here and throughout the year,

i6 ¼ i ðmod 3Þ3 and i6 ¼ i ðmod 2Þ2: ð11Þ
Another interrelated set of cycles, for which no adjustment is needed,

are those of lengths 2, 5, and 10. By our assignment of numbers, the
relationship is:

i10 ¼ i ðmod 5Þ5 and i10 ¼ i1 1 ðmod 2Þ2: ð12Þ
Our example of a reading of the tika begins with row 7, column 12,

because several symbols appear close together. Row 7 indicates that
the 7-day week name is 77, and the symbols in the square further
identify the day as 55 and 66. The symbols in the next square (row
1, column 13) read 38 and 19, and so the square being read is 28 and 99.
Further, we know from relationships (9), (10), (11), and (12) that a 66
is also a 33, a 28 is also a 24 and a 22, and a (55, 22) combination is also
a 510. Hence, in all, the day is (11, 22, 33, 24, 55, 66, 77, 28, 99, 510).
As another example, let us read row 6, column 25 of the tika. The

sixth row indicates that it is 67, and the symbols in the square further
identify it as 55 and 66. Just before it is the symbol for 38, and just after it
is the symbol for 19. Hence, in all, the day is (11, 22, 33, 44, 55, 66, 67, 48,
99, 510). Our reading in this example can be verified by addition. The
day is 12 columns and 6 rows, that is, 12·7 1 6 ¼ 90 days beyond the
previous example. Adding 90 to each item of the first reading indeed
gives the result in the second reading:

22 1 90 ðmod 2Þ ¼ 22; 66 1 90 ðmod 6Þ ¼ 66;

33 1 90 ðmod 3Þ ¼ 33; 77 1 90 ðmod 7Þ ¼ 67;

24 1 90 ðmod 4Þ ¼ 44; 28 1 90 ðmod 8Þ ¼ 48;

55 1 90 ðmod 5Þ ¼ 55; 99 1 90 ðmod 9Þ ¼ 99;

510 1 90 ðmod 10Þ ¼ 510:

Had the time interval included any of the multiple days, the addition
would have had to take that into consideration. The consecutive four
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days named 19 come at the start of the year (see column 1, rows 1, 2, 3,
4 on the tika). The consecutive days named 78 and 34 occur at an
important time of year when, for 2 weeks, there is a sequence of holi-
days surrounding the coming to earth of the spirits of the ancestors,
their residence in the chapels, and then their return to heaven (see
column 11, rows 1, 2, 3).
On the tika, one can also see recurring patterns of overlapping

symbols, which are concurrences of specific days within different
cycles. For example, the concurrence of 55 and 33, which occurs
every 15 days, is propitious for offerings to evil spirits, while the
concurrence of 55 and 77, falling every 35 days, is extremely lucky,
as are (55, 37) and (45, 47).
The wooden tika in Figure 3.5 has symbolic markings for days in

addition to those marked on the tika of Figure 3.6. Even for the same
days, however, the markings differ. Figure 3.8 contains a key to the
symbols for the 6 days common to both as well as the marking for one
additional day. The wooden tika testifies to the importance of these
artifacts as well as to the fact that tika, in general, are representations of
a shared conceptual model.
In order to uniquely identify any day, the Balinese often give the

three names of the day in the 5-, 6-, and 7-day weeks. These are
indeed sufficient because, together, they span the 210-day cycle;
that is, the place in one of these weeks does not depend on, or
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Figure 3.8 Symbols on tika in Figure 3.5 with numerical identifier equivalents.
(Note: each 38 and 78 is also a 34; each 66 is also a 33.)
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determine, the place in another, and taken together, they include all
possible days. With the 5-, 6-, 7-day cycle information, the specific
day can be readily read from the tika. For example, consider the
day (25, 36, 57). Because the day is 57, it is in row 5 and, by virtue
of it being 25 and 36, we seek a column in which the symbol for 55
is two squares above (row 3) and the symbol for 66 is just above
that (row 2). There is just one such column—column 29—and so,
in all, we can read that the day is,

ð11; 12; 33; 34; 25; 36; 57; 78; 89; 210Þ:
The Balinese, according to one observer, also readily solve in their

heads such problems as: ‘‘How many days to Galungan?’’ [Galungan
is a holiday that falls on (55, 26, 47)]. A typical answer is ‘‘eighty
days from the next Kliwon.’’ (Kliwon is the day-name equivalent to
55.) For us, this would be extremely difficult, if at all possible. It
becomes straightforward, however, were we to use a tika or a mental
image of one. Suppose that the current day, the day on which the
question is being asked, is the day (25, 36, 57) discussed in the
example above. Putting our finger on that day on the tika—row 5,
column 29—we then move forward to the next Kliwon, that is, to the
next 55, which is in row 1, column 30. Galungan (55, 26, 47) is in row
4, column 11. The difference between row 4, column 11 and row 1,
column 30 is 11 columns plus 3 rows, which equals 11 (7) 1 3 ¼ 80
days.
Alternatively, we could find the difference using the Chinese

Remainder Theorem. As was emphasized when we introduced the
theorem into the discussion of the Maya earlier in this chapter
(section 2), this question is ubiquitous among the numerous cultures
whose calendars involve multiple cycles. Here, the question is to
calculate the difference between ‘‘the next Kliwon’’ (55, 66, 17) and
Galungan (55, 26, 47); that is, to solve the simultaneous
congruences,

0 ðmod 5Þ ¼ 24 ðmod 6Þ ¼ 3 ðmod 7Þ:
Since 5, 6, and 7 are relatively prime, no preliminary modification,
as was needed in the Mayan problem, is needed here. Also, there
are no infeasible dates as there were for the Maya calendar.

Step 1:

N ¼ 0 ðmod 5Þ ¼ 01 5p for some integer p: ð13Þ
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Also,

N ¼ 24 ðmod 6Þ ¼ 2ðmod 6Þ so 5p ¼ 2 ðmod 6Þ: ð14Þ
Step 2: To solve (14) for p, Euler’s theorem can be used. In this case,

that gives,

p ¼ 2 ð5Þwð6Þ21 ðmod 6Þ where wð6Þ ¼ 2;

p ¼ 10 ðmod 6Þ ¼ 41 6b for some integer b: ð15Þ

Step 3: Combining (13) and (15),

N ¼ 5 ð41 6bÞ ¼ 201 30b: ð16Þ
Combining (16) with N ¼ 3 (mod 7),

3 ðmod 7Þ ¼ 201 30b;

and so

4 ðmod 7Þ ¼ 30b: ð17Þ

Step 4: To solve (17) for b, once again Euler’s theorem is used. Here,
the result is,

b ¼ 4 ð30Þwð7Þ21 ðmod 7Þ where wð7Þ ¼ 6;

b ¼ 4 ð30Þ5 ðmod 7Þ ¼ 2 ðmod 7Þ ¼ 21 c for some integer c: ð18Þ

Step 5: Combining (16) and (18),

N ¼ 201 30 ð21 7cÞ ¼ 801 210c

N ¼ 80 ðmod 210Þ:
The modern mathematical procedure makes the simplicity of the

direct use of the tika all the more apparent. In large part, that is because
the mathematical procedure can be applied more widely, while the tika
is particular to these cycle lengths. But that is precisely the point—the
tika is not a calculating device but is rather an elegant and parsimonious
symbolic representation of the concurrent cycles in the Balinese calen-
dar. By its spatial arrangement, and with a minimal set of symbols, it
visually conveys all that is needed.
Another Balinese structuring of time involving the concurrence of

cycles is found in the music of Bali, in particular the gong ensemble
music that accompanies rites and ceremonies. The gong ensembles or
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gamelan orchestras are made up of gongs of different types and sizes
and, hence, of gongs with different timbres and pitches. Particularly in
archaic gamelan pieces still played today, or in more modern pieces in
which there is an overlay of melodic elaboration, the underlying struc-
ture is intersecting and overlapping cycles. The instruments are struck
periodically, each with a different period, with the times of striking so
patterned that, together, they form a supracycle, which is then repeated.
Here, as an example, one such piece is described. We denote the

largest gong by A and the two other types by B and C. D and E are both
the same instrument but with higher and lower pitches. In linear order,
the gongs struck are:

A&B; E; D; E; C; E; D; E;

2 ; E; D; E; C; E; D; E; B; E; D; E; C; E; D; E;

2 ; E; D; E; C; E; D; E; A&B; …:

Gong A marks the starting point of a supracycle. During the time of
one supracycle, B is struck twice, C is struck four times, D is struck
eight times, and E is struck sixteen times. The strikings of each
gong are begun at such times in the supracycle that, with the excep-
tion of A and B whose coincidence marks the start of a new supra-
cycle, none of the strikings are simultaneous. Figure 3.9 illustrates
the same piece, but highlights where each gong is struck in the
supracycle.
The supracycle is effectively subdivided into 32 parts. When looking

at Figure 3.9, it is important to bear in mind that the sound made when a
gong is struck persists for some time; longer sounding instruments are
those struck less often in the supracycle. As a result, although the
striking cycles within it are offset from each other, the sounds, never-
theless, do overlap.
While those of us accustomed to a different type of music might

neither appreciate nor hear these cycles within cycles or cycles upon
cycles, they are an auditory manifestation of the Balinese structure of
time. In a similar way, the patterned symbols on the tika are a visual
manifestation of the same structure. And the Javanese–Balinese calen-
dar itself is a highly formalized and abstract conceptualization of the
same temporal structure used to organize the activities of individuals
and groups. All of these forms reiterate the Balinese concern for
knowing clearly and precisely where an instant is situated in time
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and, hence, where it is situated in the confluence of the controlling
forces of the gods and demons of the Upper and Lower Worlds. Time
is not simply to be noted: it is an active, rather than a passive, part of
an event.

5 The Javanese–Balinese calendar is, perhaps, the most abstract of
calendars. For those of us not enculturated as Balinese, even

visualizing the interplay of ten concurrent cycles is not easy. Using
them to regulate our daily lives would be even more difficult. There
are calendars of numerous other cultures involving multiple cycles,
but our discussion of the Javanese–Balinese calendar and Maya calen-
dar should be sufficient to accentuate the fact that the purpose of a
calendar need not be to remain in synchronization with the sun, or
with the moon, or with any other physical cycle. The more divorced
the calendar is from physical cycles, the more it becomes a creative
expression of abstract mathematical ideas. For the Maya and Balinese,
as well as for others whose calendars involve the interplay of abstract
cycles, some of the mathematical ideas and questions are restricted to
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Figure 3.9 The chart on top shows linearly when each gong is to be struck. Below,
the same information is shown in circular form. t0 is the starting time for the piece, and
T is the time for one full supracycle.
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specialists, but, nevertheless, the logic of interlinked cycles is perva-
sive in the cultures.
Concepts of time are part of a framework for structuring and inter-

preting the surrounding world and events occurring within it. As such,
formulations, visualizations, and representations of time are an integral
part of daily thinking. In all, concepts of time are a crucial part of a
culture’s world view. Although we cannot experience the world view of
another culture, their calendar provides us with significant insight into
their conceptualizations.

Notes

1. The spread of the 7-day week and the origins of the names assigned to the days
within it are discussed in ‘‘Religions and the seven-day week,’’ Boris Rosenfeld,
LLULL, 17 (1994) 141–156. In ‘‘Naming the days of the week: A cross-language
study of lexical acculturation,’’ Cecil H. Brown, Current Anthropology, 30 (1989)
536–550, 148 languages are examined to show the diffusion of the 7-day week. The
pair of articles give a picture rich in detail. The week as a cultural phenomenon is
discussed in an excellent book by Eviatar Zerubavel, The Seven Day Circle: The
History and Meaning of the Week, Free Press, New York, 1985. The chapters that
discuss attempts to modify the week by the post-revolutionary governments of
France and Russia give particularly interesting insights into the cultural hold of
the week.
For discussions of the Akan calendar, see Philip F.W. Bartle, ‘‘Forty days: The

Akan calendar,’’ Africa, 48 (1978) 80–84; ‘‘The origins of the Akan,’’ Abu Boahen,
Ghana Notes and Queries, No. 9, Nov. 1966, pp. 3–10 and pp. 113–115 in Ashanti,
R.S. Rattray, Negro Universities Press, New York, 1969 (a reprint of a 1923 publi-
cation by Clarendon Press). ‘‘The Northern Thai calendar and its uses,’’ Richard
Davis, Anthropos, 71 (1976) 3–32 is an excellent, detailed exposition of a calendar
that has both cyclic and linear components and how the calendar is integrated into
the life of the Muang people. An appendix contains 24 formulas for deciding
whether days are auspicious or inauspicious for particular activities.

2. For excellent comprehensive overviews of the Maya, see J. Eric S. Thompson, The
Rise and Fall of Maya Civilization, University of Oklahoma Press, Norman, 1954
and John S. Henderson, The World of the Ancient Maya, Cornell University Press,
Ithaca, NY, 1981. Maya concepts of time and the role and significance of the
calendar in daily life are discussed in ‘‘Remembering the future, anticipating the
past: History, time and cosmology among the Maya of Yucatan,’’ Nancy M. Farris,
pp. 107–138 in Time: Histories and Ethnologies, D.O. Huges and T.R. Trautmann
eds, University of Michigan Press, Ann Arbor, MI, 1995; Time and Reality in the
Thought of the Maya; Miguel León-Portilla, Beacon Press, Boston, MA, 1973; and
Time and the Highland Maya, Barbara Tedlock, University of New Mexico Press,
Albuquerque, NM, 1982. A brief well-stated presentation combining both concepts
and time measurement specifics is ‘‘Time in Maya culture,’’ Henry J. Rutz, pp. 981–
983 in Encyclopedia of the History of Science, Technology, and Medicine in Non-
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Western Cultures, H. Selin, ed., Kluwer Academic, Dordrecht, 1997. Specific exten-
sive, detailed discussions of Maya calculations are in ‘‘Maya numeration, computa-
tion, and calendrical astronomy,’’ Floyd G. Lounsbury, pp. 759–818 in Dictionary
of Scientific Biography, vol. 15, Supplement 1, 1978 and in ‘‘Mathematical notation
of the ancient Maya,’’ Michael P. Closs, pp. 291–369 in Native American Mathe-
matics, Michael P. Closs, ed., University of Texas Press, Austin, TX, 1986. Also
‘‘The ancient Maya: Mathematics and mathematicians,’’ by Closs in Proceedings of
the CSHPM 18th Annual Meeting 1992, vol. 5, J.J. Tattersall, ed., 1992, pp. 1–13
discusses the archeological evidence regarding the scribes and their subgroups that
worked with the mathematical calculations. The evidence shows that these groups
included both men and women.

The Long Count date 9.0.19.2.4, which we used as an example, was on a stela that
was also dated in the Calendar Round as 2D4, 2A10. According to one commonly
accepted correlation with the Gregorian calendar, the beginning of the Great Cycle
that was then ongoing was in 3114 BCE. Hence, the date given by the Long Count
would be in 454 CE. The stela also placed the day within a 9-day cycle of Lords of
the Night. (Each day in this cycle was associated with one of the nine levels of the
underworld.) In addition, the day was placed within a lunar cycle. Lunar years and
half-years are made up of 29- and 30-day lunar months. The stela contained the
moon number within the lunar half-year, the age of the moon, and whether it was a
29- or 30-day month. On some stelae, the dates also identify a day within the 819-
day cycle associated with the rain god.

3. For basic discussions of the algebra of congruences, see Invitation to Number
Theory, Oystein Ore, New Mathematical Library, MAA reprint of 1967 original;
Elements of Number Theory, I.A. Barnett, Prindle, Weber, and Schmidt, Boston,
MA, 1969; and pp. 281–321 in Invitation to Mathematical Structures and Proofs,
Larry J. Gerstein, Springer, Sudbury, MA, 1996. Some history and additional refer-
ences for the Chinese Remainder Problem are in A History of Mathematics: An
Introduction, Victor J. Katz, HarperCollins College Publishers, New York, 1993.

4. For excellent overview of Balinese culture, see the ‘‘Introduction,’’ pp. 1–76, by J.L.
Swellengrebel in the book he edited Bali—Studies in Life, Thought, and Ritual, W.
Van Hoeve, The Hague, 1960; Traditional Balinese Culture, Jane Belo, ed., Colum-
bia University Press, New York, 1970; The Three Worlds of Bali, J. Stephen
Lansing, Praeger, New York, 1983; and Lansing’s, The Balinese, Harcourt Brace,
New York, 1995.

An interesting sequence of articles discussing the Balinese concept of time is
Person, Time, and Conduct in Bali: An Essay in Cultural Analysis, Clifford Geertz’
Cultural Report Series, No. 14, Yale University, New Haven, 1966 (reprinted in
Geertz’, The Interpretation of Cultures, Basic Books, New York, 1973); ‘‘The past
and the present in the present,’’ Maurice Block,Man, 12 (1977) 278–298; and ‘‘The
social determination of knowledge: Maurice Block and Balinese time,’’ Leopold
E.A. Howe, Man, 16 (1981) 220–234. (The latter article contains the observation
cited in the text about the Balinese solution of such problems as, ‘‘How many days
to Galungan?’’).

Additional specifics about the calendar are in ‘‘Holidays and holy days,’’ R.
Goris, pp. 114–129 in the book edited by Swellengrebel cited above; Appendix I,
pp. 223–239 in Modern Javanese Historical Tradition, M.C. Ricklefs, School of
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Oriental and African Studies, University of London, London, 1978. The illustration
of the paper tika follows the figure on p. 285 of Island of Bali, Miguel Covarrubias,
Alfred A. Knopf, New York, 1938, and the wooden tika is described in detail in
‘‘Een Balineesche kalender,’’ W.O.J. Nieuwenkamp, Bijdragen tot de Taal-, Land-
En Volkenkunde van Nederlandsch–Indie, 69 (1914) 112–126. Figure 3.5 is from
Plate I on p. 117 of this article.
Discussions relating Balinese concepts of time with music are ‘‘Time and tune in

Java,’’ Judith Becker, pp. 197–210 in The Imagination of Reality, A.L. Becker and
A.A. Yengoyan, eds., Ablex Publishing Co., Norwood, NJ, 1979; ‘‘A concept of
time in a music of Southeast Asia,’’ José Maceda, Ethnomusicology, 30 (1986) 11–
53; and ‘‘Epistemology and music: A Javanese example,’’ Stanley B. Hoffman,
Ethnomusicology, 22 (1978) 69–88. The specific gamelon piece described in the
chapter follows his discussion.

CHAPTER 3

88

Ascher, M. (2002). Mathematics elsewhere : An exploration of ideas across cultures. ProQuest Ebook Central <a
         onclick=window.open('http://ebookcentral.proquest.com','_blank') href='http://ebookcentral.proquest.com' target='_blank' style='cursor: pointer;'>http://ebookcentral.proquest.com</a>
Created from nyulibrary-ebooks on 2020-09-29 16:38:23.

C
op

yr
ig

ht
 ©

 2
00

2.
 P

rin
ce

to
n 

U
ni

ve
rs

ity
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



CHA P T E R 4

Models and Maps

The Marshall Islands stick charts first came to the attention of Wester-
ners in an 1862 report by an American missionary. In his brief para-
graph about them, he says that they were used to retain and impart
navigational knowledge, but were so secret that his informant, although
the husband of a chief, was threatened with death. During the next 50
years, about 70 charts and some information about them were obtained
from Marshall Island navigators or those who claimed to understand
these navigational aids.
Here, we examine these charts and the knowledge they embody in

order to increase our understanding of the scientific and mathematical
ideas of the Marshall Islanders. As so often when we look at ideas in
cultures other than our own, examination of the ideas of the Marshall
Islanders leads us to think further about some of our most basic
concepts. In this case, we focus in on ideas about models and ideas
about maps.

1 A standard dictionary definition of a map is ‘‘a representation,
usually on a flat surface, of a portion of space.’’ Generally, its

purpose is to locate specific places in relationship to other places.
Numerous conventions have been developed to give meaning to the
word ‘‘locate’’ and to make a map more than a personal mnemonic
device. A world map in an atlas, for example, includes longitudes and
latitudes developed to provide a grid system that can be used to specify
any particular point—that is, we locate a point at the intersection of two
lines. Most maps also include for orientation the directions North,
South, East, and West, and usually, distances between points are
much smaller than, but proportional to, distances in the space being
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depicted. These conventions, however, are not the only ones possible.
In fact, because the earth is essentially spherical, when a sufficiently
large portion of it is depicted on a flat surface, both direction and
distance cannot be preserved. For example, the familiar maps based
on Mercator projections are conformal maps, meaning that angles are
preserved. But, as a result, shape and distance are distorted. Even for
small regions, quite different conventions can be used.
In our daily lives, we encounter a variety of maps. Most of them are

used to enable us to get from one place to another. Others, such as
weather maps or geological maps, serve to convey data visually in a
meaningful way. The latter correlate different types of information with
spatial locations. The meaning of the data, whether it be temperature or
air pressure, soil and rock type, or demographic statistics, and the
symbols used to convey it, must be specifically learned for the map
to be understood. There is no clear demarcation between maps for
travel and those for data display. In fact, many travel maps contain
diverse information about the regions through which one may pass.
Let us look more closely at travel maps which, because they have a

specific function, can be discussed in relation to their function. Travel
maps, first of all, vary considerably, depending on the means of travel
for which they are intended. Maps for automobile travel, air travel,
hiking, subway travel, ocean voyaging, or coastal sailing, for example,
are quite distinct from each other. Not only do these maps differ in the
types of information they contain, but they differ in level of detail and
the size of the region depicted. Their specific contents are selected to
suit the means of travel. It would be inappropriate, if not impossible, to
use a subway map for air travel or a road map for sailing.
Figure 4.1 shows a portion of a map used for hiking in the vicinity of

Acadia National Park on Mt. Desert Island in the state of Maine in the
U.S.A. In addition to indicating landmasses, park boundaries, roads,
bodies of water, and streams, the map shows the location of hiking
trails, as well as mountain summits and their elevations. Also, an arrow
on the map shows geographic north, and there is a scale showing the
length that represents a mile. Most distinctive, however, the map has
contour lines—that is, a set of closed curves in which each curve
connects locations that are the same height above sea level. The set
of curves are drawn to show intervals of 50 feet of height. These
contour lines can also be thought of as where a set of planes, each
separated from the one below it by 50 feet—all parallel to a hypothe-
tical plane at sea level—would intersect the irregular, three-dimen-
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sional landscape. Thus, where lines are close together, the land rises
steeply; and where lines are far apart, there is only a very gradual
change in elevation.
In all, to utilize this map, hikers must be familiar with the kinds of

land and water features included, but also must understand the meaning
and use of a scale, the feet, mile, sea level system of measurement, and
the meaning and implication of contour lines.
In contrast to hiking maps, maps intended for automobile travel

generally cover a much larger region. Quite often, the region is politi-
cally defined, such as, within the U.S.A., a state or a group of states, or a
county within a state. These maps, too, indicate landmasses and bodies
of water, as well as political boundaries within the region. In addition,
they mark national, state, and local roads; population centers;
controlled access roads and their interchanges; multi-lane and single
lane roads; paved and unpaved roads, and perhaps other features of
importance to auto travelers, such as rest areas. Distances and a scale of

MODELS AND MAPS

91

Figure 4.1 Hiking trail map: Acadia National Park. (q 1998 Tom St. Germain,
Parkman Publications. Reproduced with permission.)
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miles are very important aspects of the map. Most include an arrow
somewhere indicating geographic north, although, quite frequently, the
need for this is superseded by the convention that the map is oriented on
a rectangular page such that up is north, down is south, right is east, and
left is west. Longitude and latitude are rarely, if ever, included on
highway maps. However, in order to locate specific places within the
region, the mapmaker usually superimposes his own grid system. For
example, by placing equally spaced numbers along the top and bottom
edges and letters along the sides, any specific place in the region can be
identified as in the rectangle centered at, say, the point B7; that is, in the
rectangle centered at the point where a line perpendicular to a side edge
at B intersects the line perpendicular to the top or bottom edge at 7.
Quite often, maps of smaller regions are inset in, or in some way
appended to, a road map. These smaller regions may be denser in
roads or of special interest to travelers, thus requiring a larger scale.
In general, there is no one size or scale that is appropriate for all
travelers and all regions, and so a number of maps are often used.
Despite their differences, we can read them because of our knowledge
and experience of road systems and auto travel. Even more important to
our reading is that we have been taught about many Euro-American
map conventions, and, in this context, as well as in other contexts in our
culture, we have been taught about scales, the units of measure, and
grid systems, and also about political subsubdivisions and jurisdictions.
Before moving to a general definition of maps, let us look at one

more type of travel map from our culture; this type is quite different
from the hiking maps and auto travel maps. A striking difference is that
this type of map has no precise scale and no distance indicators. In fact,
it has little else that we might commonly expect on maps. Figure 4.2 is a
map of the metro system in Washington, DC (U.S.A.). Such maps are
familiar to those who live in or visit these cities or other densely
populated areas including New York City, Mexico City, Munich,
Paris, London, or Tokyo.
Regardless of the cities they come from, metro maps are remarkably

similar in content and in their form of representation. They show, essen-
tially, a set of named points interconnected by lines of different colors.
The use of color is particularly important as it indicates which of the line
segments connect to each other to form a continuous path linking a
subset of the points. Generally, two or three different types of points
are distinguished from each other in some way. The points, as we have
learned, represent train stations, and the lines represent the paths of the
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trains. Each color is a different train line, with the points along it being
the stations at which that train stops. The specially marked points are
stations where a passenger can transfer from one train line to another.
Although not indicated on the maps, it is understood, unless otherwise
noted, that there are trains that go in opposite directions along each path.
Because the maps represent particular configurations in space, to some
degree, the layouts maintain the spatial relationships of the physical
parts of the metro networks. While quite imprecise with respect to
distance or directions, metro maps contain all that one needs to know
to get from here to there within the metro network. To a metro rider,
which train line a station is on, or at which station one can change from
one line to another, is far more significant than the shape of the land-
masses or the exact distances being traversed.
Maps, as just these few examples show, must be viewed broadly;

and, with a broad view, we can better appreciate them as products of
mathematical abstraction. The mapmaker draws upon diverse informa-
tion that has been obtained from drawings, reports, and stories; and
from these, he creates an analogical space—that is, a space that is
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Figure 4.2 Washington, DC Metro system map. Figure courtesy of the Washington
Metropolitan Area Transit Authority.
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substituted for another. Within the space, physical entities selected as
significant are symbolically represented. And, most important, relation-
ships that may not be seen directly while in the original space, are made
visually explicit in the analogical space. It is in establishing these
relationships that scientific or technical knowledge is used (or created),
and mathematical ideas are an integral part of the way in which these
relationships are formulated and expressed. It is important to realize
that maps are not snapshots of space—there is no vantage point from
which anyone can see the original space as it is shown on the map.
Although, in Euro-American culture, maps are generally associated

with their paper embodiments, maps can be rendered using other media
as well. In other times and in other cultures, people have used stone,
clay, treebark, or whatever was available and convenient for them. The
Inuit of the Canadian Arctic, for example, who are renowned for their
mapmaking skills, used snow- or sand-covered ground. The drawings
themselves were soon gone, but their creation combined with detailed
discussion enabled the viewers to commit them to memory. And, as we
shall see, the Marshall Islanders, who live just north of the equator in
the Pacific (see Map 4.1) used materials readily available in their envir-
onment–materials that were commonly used by them for creating
durable artifacts.
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Map 4.1 Oceania.
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In the history of Western cartography, a distinction was made
between maps and charts. Charts referred to the depictions used by
mariners that contained varied types of information based on their
experience and specific to their purposes. Maps, however, were largely
academic, concerned with the world as a whole. Early cartographers,
such as Ptolemy of Alexandria, Greece (ca. 120 CE), defined what they
did as geography–‘‘a representation in pictures of the whole known
world together with the phenomena which are contained therein.’’ He
distinguished that from chorography, which he deemed regional and
selective, ‘‘even dealing with the smallest conceivable localities, such
as harbors, farms, villages, river courses, and the like.’’ Our broader
definition of maps is in keeping with more modern writers who view
world-wide maps and local maps simply as different streams, which
have an underlying conceptual unity and which eventually merged.
Differences in terminology, however, have persisted. Hence, maps
specifically for mariners are still called charts, and so the unique objects
created by the Marshall Islanders are commonly referred to as stick
charts.
Made of palm ribs tied with coconut fibers and sometimes with a few

shells attached, the Marshall Islands stick charts are sizeable objects,
generally about 60–120 cm by 60–120 cm. The stick charts are, essen-
tially, of two different types. One type is maps. Figure 4.3 shows what a
few of those that are maps look like. For a long time, Westerners did not
recognize these as maps and found them quite perplexing. The Inuit
maps, by contrast, although from another culture, were easily recog-
nized and considered to be very accurate and perceptive. As our maps
did, the Inuit maps contained details of the coastline and distinguished
waterways from interspersed landmasses. Despite the fact that the Inuit
means of travel and modes of navigation may have been considerably
different from that of the Westerners, the drawings that the Inuit made
for them were sufficiently similar to be understood. The Marshall
Islands stick charts, however, are renderings of large open expanses
of ocean. What they show is meaningful only if one knows something
about wave piloting, a system of navigation unique to the Marshall
Islands. As contrasted to, say, our road systems or metro systems,
which rely on material objects fixed in space, the wave piloting system
depends on a conceptualization of the dynamic interplay of land, wind,
and water. We have learned, for example, to distinguish between multi-
lane controlled access highways and unpaved single lane roads, and
how they affect automobile travel. But whether or not we use the roads
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Figure 4.3 Stick charts that are maps.
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for automobile travel, they and their distinctions, nevertheless, are
there. Similarly, to Marshall Island navigators, the features depicted
on their maps, although they are not concrete objects and not fixed in
space, are present in the ocean, whether or not one has learned to see
them or use them.
The stick charts that the Marshall Islanders refer to as meddo and

rebbelith are maps. The other stick charts, the second type, are called
mattang and are not all what we classify as maps. Used as training
devices, the mattang introduce the prospective Marshall Islands navi-
gators to the features of the environment that will be included on the
maps. They show the interplay of oceanographic phenomena and land
masses. That is, they are static, idealized representations of shapes and
motions in the sea and at the land/sea interface. The mattang are expla-
natory models of the dynamic geometry that underpins wave piloting.
Thus, the mattang are the key to gaining insight into the system that

utilizes the stick charts that are maps. As is the necessary prerequisite
for reading any map, we (and the Marshall Islands navigators) must first
understand what in the original space is considered significant and so
will be preserved in the analogical space. And of course, as one learns
what is significant, one is learning why it is significant or what role it
plays in the system. But over and above being necessary for map read-
ing, the mattang are of importance in themselves, because of the math-
ematical and scientific ideas they embody, and because they are
exemplars of explanatory models. Before we go further, however, we
need a greater understanding of the surroundings in which the stick
charts were created and used.

2 The Marshall Archipelago consists of about 29 coral atolls and 5
small coral islands formed into two parallel chains running about

960 km in a northwest–southeast direction (see Map 4.2). Each atoll
consists of a lagoon surrounded by a narrow ring of coral reef and
small islands. Lagoons of larger atolls are in the range of 32–42 km in
length and 8–16 km in breadth. Bikini, the northernmost atoll in one of
the chains, became famous as the site of U.S. nuclear bomb tests after
World War II. It consists of a ring of 51 small islands with a total land
area of 7.7 sq. km surrounding a 630 sq. km lagoon. Before they were
moved in 1946, the Bikini populationwas 170 people. Another example,
in the southern end of the other chain, is the more densely populated
Majuro atoll. Consisting of a ring of 61 small islands surrounding a 260
sq. km lagoon, its total land area is about 8.5 sq. km, and in 1946, it had a
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population of about 1600 people. In all, theMarshall Islands have a land
area of just under 180 sq. km scattered over about 970,000 sq. km of
ocean. At the time they became part of the U.S. Trust Territory in 1947,
there was a population of about 10,000 people.
Because there is so little land, with much of what there is being poor

soil along the shores or swamps in the interiors, considerable commu-
nity attention focuses on how land is passed on, how it is used, and how
its fruits are distributed. Although there are differences in details and in
formality from atoll to atoll, there are clear social classes. Within these
classes, there are further distinctions based on maternal lineages (indi-
viduals who are related through successive mothers to a common
ancestor) and on clans (groups of related lineages). On Majuro, for
example, about 10% of the people are nobility, while the other 90%
are commoners. Land is never sold and is never personally owned by a
single individual. Although it is worked by the commoners, rights to the
produce of any piece of land are shared by the paramount chief, a noble
lineage, and a commoner lineage. When possible, small surpluses are
given to those who provide specialized services, such as shamans,
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Map 4.2 The Marshall Islands.
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navigators, and master craftspeople. The shore areas grow coconut
palms, and pandanu; further inland grow breadfruit, arrowroot, banana
trees and some hardwoods; and taro grows in the swampy interior.
These provide food and fuel, as well as construction materials and
weaving materials. Sailing canoes, for example, were made from
logs of the breadfruit trees lashed together with lines spun from coconut
husk fibers. The woven objects, made primarily from pandanu leaves
and coconut leaves, included sleeping mats and highly decorated
women’s dress mats, as well as sails for the sailing canoes. And
copra (dried coconut meat) has been an export since the coming in
1860 of the Americans, then the Germans, then the Japanese.
It is water, however, that dominates the environment. Hence, sailing

and boats are an integral and essential part of life. On an atoll, within
the lagoon, sailing canoes are used for fishing, for the collection of food
and copra, and for traveling to visit friends. In addition, boats are used
for open sea fishing in the vicinity of the atoll and, beyond that, for open
sea travel to other atolls. Some small sailing canoes of about 5 m, which
can also be paddled or rowed, are for use around the edges of the reefs.
But to cross the lagoon, and to carry passengers and cargo, the boats are
7–9 m long and require a crew of two or three people. These boats, and
still larger ones, are used for travel to other atolls in the Marshall
archipelago and for trips that extend even further.
The boats used by the Marshall Islanders are generally referred to as

outriggers because of their distinctive configurations. As contrasted to
the sailing boats more common in Euro-American environments, the
Marshall Islands boats are asymmetrical with respect to the center line
from bow to stern. One side of the hull is flat, and the opposite side is
convex. Projecting outward from the convex side is an outrigger made
of poles attached to a shaped log. On the poles, adjacent to the hull,
there is a platform on which the crew sits (see Figure 4.4). In larger
boats, there is a small hut on the platform providing an enclosed space
for provisions, sleeping mats, and travelers. As a result of the boat’s
asymmetry, in sharp contrast to Euro-American sailboats, the sail can
be put out only on one side, that is, on the side opposite the outrigger.
Further, on Euro-American sailboats, there is a distinct difference
between the front end and the back end; generally, the bow is
wedge-shaped, and the stern is flattened. The Marshall Islands outrig-
gers, however, are canoe-shaped; that is, both ends are wedge-shaped
so that either end can serve as the front or as the back. These differences
in design, of course, lead to differences in how the boat is sailed.
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Still being taken in the first part of the twentieth century were long-
distance sailing trips to such places as the Caroline Islands, and the yet
more distant Palaus and Saipan. Both of the latter are over 2500 km
from the Marshall Islands. Earlier, as well as long-distance trips by a
few boats, there were large-scale sailing expeditions with numerous
boats and hundreds of people. The 1862 report of the American
missionary describes boats that could carry 50–100 men in the open
sea, and also recounts the festive return from some northern atolls to
Ebon of 800 people in a fleet of 40 boats. Another nineteenth-century
account tells of 18.3 metre-long boats carrying 40 to 50 people each
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Figure 4.4 An outrigger on Jaluit Atoll. (Photographed in 1899 by H.C. Fassett.
National Archives photo no. 22-ss-104b.)

3 = 6  ( ( 6;M ;MC= E P . 3 Q E ;MC C> ; ;= = EM 8 M < 4 M ;E 0;
=EC= 1PC > P  MM . < = M ;E M = :<E; 1 MM . < = M ;E M = M; A M1 :<E; M E 1 = . C M / 2 MM . < = M ;E M = 0 ;2

4 ;M > EC< ; < ( ( - (- ' .),.

4
CA

M
(

(
C

=
M

9
C

CM
3

EE
CA

M
>



and flotilla of up to 100 boats. These large sailing expeditions were led
by chiefs, but their success, and the success of the more common trips
within the atoll chains, depended on the navigators.
The navigators, usually relatives of a paramount chief, were highly

regarded, specially selected, and extensively trained. Their knowledge
and techniques were greatly prized and well-kept secrets. Knowledge,
in general, was viewed as a personal possession, and, as such, it was
not freely shared or given away. The ownership of knowledge,
however, carried with it the responsibility for its preservation and
transmission. Thus, the navigators each selected some individual to
whom they passed on their knowledge and their personally developed
systems. The person selected was a favorite child or someone speci-
fically adopted because of showing special interest or special aptitude.
In addition, some navigators, who were considered masters, oversaw
the teaching of the prospective navigators for their extended families.
This gave rise to shared systems and ongoing schools that traced back
to a master navigator. As a result, while there was a Marshall Islands
navigation tradition, there were, within it, some differences from
school to school. The child selected by a navigator to carry on the
knowledge could be a male or a female, and at least two masters cited
by the Marshall Islanders were women. There was, for example, a
large school on Namorik that was said to have grown up around the
master Legemugidj. He adopted Lidérmelu, who learned all her
seafaring skills from him, and from then on, the school was known
by her name.
Eventually, some of this navigational knowledge was told to Wester-

ners. However, what was told was far from complete as the Marshall
Island tellers never intended to give full understanding to others. Since
the Marshall Islanders had no indigenous writing system, we have only
what was eventually recorded by outsiders. We also have about seventy
stick charts that still remain in museums and in private collections.

3 The extensive training of the navigators centered on wave piloting.
The navigators had to learn to see and to understand the shapes and

motions in the sea that would be used to guide their travel. They had to
learn to read the stick charts that were maps, but first, and even more
crucial, they had to learn what of the environment was considered
significant and what role it played in their navigation system. And it
was, as we noted, the stick charts referred to as mattang that played an
important role in this training of the navigators.
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A typical mattang is shown in Figure 4.5. That these are not simply
personal idiosyncratic devices but, instead, formalized and standar-
dized models, can be seen by comparing them with other, almost iden-
tical mattang that were separately reported and collected (see Figure
4.6). Some other examples are shown in Figure 4.7. When looking at
these, several features are striking. One, of course, is their symmetry.
Another is the interplay of geometric forms bringing to mind familiar
words such as triangles, sectors, arcs, perpendicular bisectors, angles of
intersection, points of intersection, and so on. Also, there is their
diagram-like clarity. To emphasize that this is, indeed, the nature of
the artifact and not the result of our rendering, we note in particular that
Figure 4.5 is a photograph of a mattang, while Figures 4.6 and 4.7 are
drawings. The lettered labels, however, are our superimpositions.
The various parts of the mattang have been described differently by

different writers who spoke with Marshall Islanders. From these
descriptions, it is clear that the mattang are generalized configurations
containing idealized shapes and forms that were used to explicate the
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Figure 4.5 A typical mettang. (Plate VI in ‘‘On sea charts formerly used in the
Marshall Islands, with notices on the navigation of these islanders in general,’’ Captain
Winkler, Annual Report of the Smithsonian Institution for the Year Ending June, 1899,
Washington, DC)
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principles of swell and land interaction. What sometimes appeared to
interviewers as confusion or inconsistency was, instead, a problem
created by their own persistence in believing that the mattang were
specific and concrete. In a telling exchange, we read, for example,
that a Marshall Islander first associated some point with Jaluit atoll
and later with Namorik atoll. When faced with this contradiction
‘‘the natives were quick to explain that it didn’t matter—the chart
was not where Jaluit in particular lay, but where land was. They stoutly
maintained that it could be some island in another part of the world, one
they had never seen.’’ This, of course, is what we deem an idealized
model. What is more, as a generalized illustrative configuration, parts
of the mattang were referred to in different ways depending on the point
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Figure 4.6 Similar mettang.
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being made. Rather than inconsistency, the various descriptions, taken
together, convey a corpus of ideas.
Before looking at the mattang specifically, we must introduce some

of the oceanographic phenomena fundamental to the system of wave
piloting. Basic among these phenomena are what we term refraction,
reflection, and diffraction of swells.
As waves move away from the winds that create them, they merge

into swells formed by groups of waves of similar period and height.
These sinusoidal swells can travel thousands of miles across the deep
open ocean with very little loss of energy. For the open Pacific Ocean,
the period of the waves—that is, the time interval between when one
wave crest and the next pass some arbitrary point—is 16 or more
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Figure 4.7 Other mettang.
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seconds. Based on the period, the wave speeds can be calculated. For
waves of period T, the wave speeds are gT/2p , where g is the gravita-
tional constant 9.8 m/s2. Hence, for these with T¼ 16 or more seconds,
the wave speeds are more than 80 km/h. Swells move at about half the
speed of the waves that they contain because some of the energy goes
into setting the water in front of them into motion. Because the
Marshall Islands are surrounded by deep (4000–5000 m) open ocean,
long, fast-moving swells that are clear and consistent in pattern move
toward them across the water. Swells, however, change when they meet
underwater obstructions or reach shallow water. Shallow is a relative
term, depending on the length of a wave: specifically, shallow is
defined as less than half the wave length (wave length ¼ gT2/2p ¼
period £ wave speed). In this case, that is upwards of 198 m. Hence, in
and around the Marshall archipelago, the approaching swells are modi-
fied in direction and energy. The complicated and distinctive interac-
tions of modified swells are the ‘‘landmarks’’ that the Marshallese
navigators learn to read and interpret.
Wave refraction and its effects dominate the mattang. When waves

move into shallow water, friction causes them to slow down. Depend-
ing on the ocean depth beneath it, a wave slows down differentially and
so bends, eventually becoming more or less parallel to the underwater
contours and, then, more or less parallel with the shoreline. This gives
rise to the familiar observation of standing on any beach and seeing the
waves come in toward you, even though further out they may be seen
approaching at an angle. Figure 4.8 shows how a wave train wraps
around a circular island assuming that the island has a uniform and
gradually sloping underwater topography. Some energy is lost to fric-
tion, but concomitant with the bending of the wave front, its energy
may become spread out or concentrated in different places, and there
can be an increase in wave steepness until the wave peaks, becomes
unstable, and breaks.
First of all, however, in the open sea, there is a swellmoving in front of

the wind. Let us say the wind is coming from the east. An atoll off in the
westerly direction is signaled when the swell begins to bend inward.
However, due west of the atoll, there would be a region where the
refracted arms of the swell cross, although with greatly lessened energy.
In our refraction diagram (Figure 4.8), we showed a circular island

with gradually sloping underwater topography. If the island were,
instead, rectangular and rose up suddenly and steeply, the waves
would be more abruptly stopped in their forward motion. But as the
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waves continue forward to the sides of the island, some of their energy
would be propagated sidewards causing them to spread out along their
edges. Just around the sides of the island, there may be an increase in
wave height, but beyond that, these spread-out edges are increasingly
lessened in height. As with the diffraction of light, there is a ‘‘shadow’’
behind the island, but it is a shadow with imperfect edges (see Figure
4.9). Thus, the more elongated the shape and abrupt the rise of the atoll,
the less bending of the swell occurs on the windward side; on the lee
side, the bent arms may not even cross as they are separated by a region
with no energy from the swell.
Whether the land barrier rises gradually or steeply, some part of the

wave will be reflected backwards. For a steep barrier, where there is no
bending of the wave front, the reflected wave has much the same energy
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Figure 4.8 Wave refraction.
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as the incoming wave, and so, meeting quickly and head on, they spray
water up into the air. For a gradually rising barrier, it is the bent wave
that is reflected back to meet the incoming wave (see Figure 4.10).
Hence, as waves meet at an angle, a running crest develops. This
interaction of reflection and refraction takes place on the windward
side of an atoll.
Let us now look at the mattang and their idealized geometry of swell

interactions. On Figure 4.7e, one swell is represented; on Figures 4.7a
and 4.7c, there are two opposing swells, and on the most common
mattang (Figures 4.5 and 4.6), there are four swells, one from each
of four perpendicular directions. Despite the symmetry of the mattang,
generally there is a slight difference that specially marks one direction.
On each mattang in Figures 4.5 and 4.6, there is a short stick (labeled
AB on Figure 4.6c) wrapped in a cord showing the direction from
which the prevailing wind is moving toward that central atoll (P).
This serves as the orienting direction. Referred to as rear, the swell
shown moving in front of this wind is rilib (‘‘backbone’’); the one
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Figure 4.9 Wave diffraction.
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opposing it is kaelib; and the two from the perpendicular directions are
rolok and bundockerik. Although rear is generally translated as ‘‘from
the east,’’ and the opposing and perpendicular directions then referred
to as ‘‘west,’’ ‘‘north,’’ and ‘‘south,’’ these words are simply for conve-
nience. Their use does not imply that directions are conceived of in our
frame of reference, and ‘‘east,’’ ‘‘west,’’ ‘‘north,’’ and ‘‘south’’ are not
the same directions as ours indicated by those names. I will follow this
conventional translation as it simplifies referring to the direction the
wind is coming from and the opposite and perpendicular directions. (In
a few places, where it is significant, I will note the actual direction
according to our system.)
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Figure 4.10 Wave reflection.
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In any discussion of sailing, be it ours or Marshallese, of paramount
importance is the relationship of where a boat is, its destination, and
where the wind is coming from. Western diagrams are generally circu-
lar and symmetric but, as with the mattang, they specially mark the
direction of the wind. Thus, for both, that is the orienting marker to
which all else is referred.
For Westerners, boat positions within the circle, and modes of sailing

to a destination at its center, are discussed in terms of sectors (see
Figure 4.11). Although the mattang are not circular, it is not surprising
that they similarly have sectors prominently marked in some way.
However, the differences between Western and Marshallese boats
modify the angles of the sectors of interest. In contrast to a Euro-
American boat, in which the sail can be put out on either side, as
was noted in the previous section, on a Marshallese boat, the sail can
only be put out on the side opposite the outrigger. Further, a Euro-
American boat can head only one end, its front end, in the direction of
travel, while for the Marshallese boat, either end can be its front end.
No sailboat can sail directly into the wind (along the line from E to X on
Figure 4.11). In fact, it cannot sail in a direction too close to that either.
The boat would make little headway and might even be pushed back-
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Figure 4.11 Sectors of sail.
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wards. For Euro-American boats, too close is about 458 on either side of
the wind (within sector DXC on Figure 4.11); for outriggers, it is within
about 658. In order to sail in those directions, it is necessary to tack, that
is, to sail back and forth across the wind, changing the side on which
the sail is out each time the direction is changed. To accomplish this on
a Marshallese boat, the rigging and sail must be picked up and moved to
the other end of the boat, and what was the front must become the back,
and vice versa. Hence, they avoid, if possible, approaches from this
sector. Furthermore, for them, the sector would be about 1308 rather
than our 908. Similarly, in sector AXB, where the wind is behind the
boat, the side on which the sail must be out differs for approaching X
from within AXQ or from within QXB. Euro-American boats avoid a
direction too close to QX since, if there is a slight deviation in wind
direction or sailing direction, the full force of the wind can unexpect-
edly swing the sail across the hull to the other side. Sailors do, of
course, cross the line and change the side of the sail when necessary,
but, then, they do so with great care. For either type of boat, it is far
preferable to remain decidedly on one side or the other of QX and so to
have a course at least 158 or 208 away from it. Finally, we note that
because of ease of steering and greater efficiency in a strong wind, a
course perpendicular to the wind is said to be easiest and most efficient
for an outrigger canoe. Thus, Marshallese explanations of the mattang
place the greatest emphasis on that line. Figure 4.12 shows the result of
incorporating the foregoing statements into our form of diagram. The
marked directions and sector angles become quite like those we see on
the mattang (see Figures 4.5–4.7).
Another important issue, however, is how these directions and

sectors are correlated, when in the water and out of sight of land,
with where one is and where one is going. While we rely, for example,
on compasses, charts, and rulers, the Marshallese navigators use the
swell interactions.
On Figures 4.7a and 4.7c, the straight edges that we have placed

vertically on the page depict the opposing swells coming from the east
(AB) and the west (CD). At the center of each rectangle is an atoll. Then,
the swells (MN) are shown curving inward as they approach the atoll.
Since, on the mattang, the arcs are similarly curved and placed equally
distant from the atoll, their intersections and the atoll fall along a
straight line perpendicular to the direction of travel of the swells.
These intersections, and the north–south line that they define, are, as
we noted, of paramount importance. (These lines and curved swells are
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shown in a slightly different way on Figures 4.5, 4.6c, and 4.7b.) Where
the bent arms of opposing swells cross, there is a narrow sector (most
clearly seen on Figures 4.5, 4.6a, 4.6b, and 4.6c) in which a series of
wavelets can be observed. The wavelets are called bot (knots or nodes),
and a series of them are idealized as being along the north–south line
called okar (the root)—just as one follows the root to get to the tree,
following the okar will lead to the island. The direction that should be
taken along the okar is determined by the change in the angles formed by
crossing swells; the angles decrease for bot closer to the atoll.
In addition to this use of swell intersections, the bent arms of the

swells themselves are used to delimit the sectors of sail. The bent arms
of rilib (coming from the east) as it passes the island are termed rolok
(the northern arm—RM on Figure 4.6c) and nit in kot (the southern
arm—KS on Figure 4.6c). The former translates into ‘‘something lost,’’
that is, you have missed the island, and the latter into ‘‘a hole,’’ that is, a
cul-de-sac. Both bent arms of kaelib (coming from the west) as it passes
the island (TM and KQ on Figure 4.6c) are called jur in okme meaning
‘‘stakes.’’ When coming toward the center atoll from the north, one
should stay between rolok and jur in okme until the okar is found and
followed. Similarly, from the south, one should be between nit in kot
and jur in okme until finding the okar.
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Figure 4.12 Significant directions and sectors when sailing toward X.
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Other meanings for the lines on Figure 4.6c focus on atolls at the
points we have labeled 1, 2, 3, 4, rather than in the center. For these, the
swells are shown as wedges rather than arcs.
With the wind from the east, for an atoll at 1, FP represents the

southern arm of rilib (AB) and GP the northern arm of kaelib, and so
1P is the okar for the atoll at 1 when approaching from the south.
Similarly, for the atoll at 2, PH is the northern arm of rilib, PN the
southern arm of kaelib, with 2P the okar for the atoll. If there is no atoll
at the center between 1 and 2, one should follow the okar from 2 until
meeting the okar for 1. And for the atoll at 4, G4N is the bent rilib,
while, similarly, F3H is the bent kaelib.
Other descriptions rely on a somewhat different denotation of the

words ‘‘nit in kot.’’ Rather than the expression referring to just the one
demarcation line KS, some use it to refer to the entire region (between
RM and KS) on the leeward side of the island in which there is greatly
lessened swell energy or, alternately, to both lines that bound this
region. In either case, for a wind from the east, when the island is to
the east, one should sail north or south to meet one of these boundary
lines in order to get out of being a ‘‘trapped bird’’ or, in our terms,
having to sail too close to the wind.
On the windward side of an atoll, wave reflection plays the promi-

nent role. For a wind from the east, land in the westerly direction is
signaled by observing the reflected bent swells coming back against the
main incoming swell. This interaction is said to be observable in a
quadrant extending outward from the atoll for about 32 km. Look
again at sector AB on Figure 4.12 and the sectors marked, in particular,
on Figures 4.7a and 4.7c. For Figures 4.7a–4.7c, now also visualize the
curved swell in motion, moving eastward to meet the incoming straight
swell. In one account, the Marshall Islands navigator says that when
one is at the meeting of the reflected and incoming swells, one should
put the boat at the corner of the crossing and head away from the corner
at an angle that is the same as the swells are forming (see Figure 4.13).
Another description notes that directly windward of the atoll, the

reflected swells are more or less parallel to the incoming swells, but
at about 458 to either side, the effect of the crossing swells becomes
clearly observable. This effect marks the delimiting arms of the quad-
rant, and so the navigator seeks to sail parallel to one of the arms in
order to go directly to the atoll. Both sets of instructions are, in effect,
the same: it is when the incoming and reflected swells meet at a 458
angle that heading away from the corner at that angle leads to the atoll
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and, simultaneously, goes along one of the delimiting arms of the
quadrant (again, see Figure 4.13).
Even without further definitive statements about what many details

of the mattang represent, it is clear that they are used as models of
swell interaction for navigational purposes. They isolate and idealize
the swells, emphasizing directionality with respect to wind and land
positions. That they are abstract models is highlighted by the use of
four uniformly depicted swells from perpendicular directions and
land masses symmetrically placed and reduced to points. In actuality,
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Figure 4.13 On the windward side of an atoll.
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there is a prominent swell that is always present. This swell moves,
in our terms, from the northeast to southwest in front of the northeast
trade winds. One Western observer noted that, depending on the
wind velocity, the swell has a height of at least 1.5 m. A secondary
swell pattern is from the southeast to northwest. Swells from the
southwest are apparently difficult for the unpracticed eye to observe,
and those from the northwest are more pronounced near the northerly
atolls. And of course, in actuality, the atolls are not symmetrically
positioned points, but vary considerably in shape and in size and in
relative positions.
As with our explanatory scientific models, the mattang are quite

distinct from representations that are simply intended to ‘‘look like’’
or evoke what is being depicted. They are neither seascapes nor
maps. Here, the accumulated experiential knowledge of the
Marshall Islands navigators has been conceptualized into a general
system, a system believed to apply to oceans and landmasses
anywhere and everywhere. The system draws upon experience but
goes beyond that to provide a framework in which the past experi-
ences can be understood. In addition, because the conceptual system
is general and has become separated from the specifics of the
experiences, it can be used to consider other experiences that are
hypothetical or yet in the future. The mattang are models used to
encapsulate and explain the system. When they are used by the
Marshall Islanders for teaching, they function as do our diagrams
on blackboards or figures in a text. We and they elaborate such
depictions with words, but words alone would be insufficient. Parti-
cularly for dynamic systems, diagrams play a crucial role. They not
only provide a way to visualize the interrelationships of the parts,
but enable us to keep the entire system in mind while mentally
manipulating or focusing on some part of it.
The essence of an explanatory model is its simplicity and parsi-

mony. It strips the system to what is considered essential. Here, those
essentials are phrased in terms of the geometric characteristics of the
ocean phenomena—the substances of the land and sea and wind are
recast into points, lines, curves, and angles, and the interplay of the
phenomena is recast into how these geometric aspects change and
interact. Since it is so well stated, to emphasize further the nature
of explanatory models, we borrow from Leo Apostel’s discussion of
them in The Concept and the Role of the Model in Mathematics and
Natural and Social Sciences:
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…when a picture, a drawing, a diagram is called a model for a physical system, it
is for the same reason that a formal set of postulates is called a model for a
physical system. This reason can be indicated in one word: simplification. The
mind needs in one act to have an overview of the essential characteristics of a
domain; therefore the domain is represented either by a set of equations, or by a
picture or by a diagram. The mind needs to see the system in opposition and
distinction to all others; therefore the separation of the system from others is
made more complete than it is in reality. The system is viewed from a certain
scale; details that are too microscopical or too global are of no interest to us.
Therefore they are left out. The system is known or controlled within certain
limits of approximation. Therefore effects that do not reach this level of approx-
imation are neglected. The system is studied with a certain purpose in mind;
everything that does not affect this purpose is eliminated.

Here, we are extending his grouping of ‘‘a picture, a drawing, a
diagram’’ to include these artifacts made of palm ribs.
Before we leave the mattang and return to the charts categorized as

meddo and rebbelith, a special mention must be made about angles and
their measurement. Angles between swells and, in particular, angles
that are the same or are increasing or decreasing play a significant role
in the system. In practice, these must be determined by the navigator
from within the boat and even in the dark of night. A primary method is
to lie down in the bottom of the boat and feel the rocking from side to
side. During their training, navigators are taught to analyze and inter-
pret this kinesthetic information. In fact, one navigator recounted how,
as an early part of his training, he was made to float in the water at
various places in order to learn how to feel what would later be shown
and explained to him.

4 Now, with some understanding of wave piloting and of what is
seen by the Marshall Island navigators as features of the environ-

ment that are significant for navigation, we can return to the rebbelith
and meddo. The charts called rebbelith are maps of the entire archipe-
lago or of one or the other of the atoll chains within it. The meddo are
maps of smaller regions. These maps differ considerably from our
nautical maps, which emphasize the outlines of land, depths to the
ocean floor, and any man-made objects that have been expressly
anchored in the ocean or on land to aid mariners. On the stick charts,
there are no semi-realistic renderings of indentations along coastlines
or promontories, but, rather, large expanses of open ocean marked with
lines and curves whose interpretations were introduced with the
mattang. On these maps, however, the lines and curves are the actual
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result of the wind and sea interaction in and around a group of real
atolls, which vary in size, shape, and underwater topography. Among
the maps, even of the same region, there are decided differences. This,
in part, is because the maps differ in their levels of generality. In
addition, they are products of different schools, based on different atolls
and with slight differences in their traditions and styles. And of course,
they are handmade objects, made by different individuals.
Figure 4.14a is the same rebbelith as shown in Figure 4.3a, and

Figure 4.14b is another rebbelith. On Figure 4.14, however, we have
included labels identifying the atolls that are said to be marked by the
shells that remain. Also, the rebbelith are now both oriented in the same
direction. The orientation is in keeping with the orientation we used in
our illustrations of the mattang (Figures 4.5–4.7). In each, the straight
edges that are placed vertically are the swell rilib, which is driven by
the prevailing wind and the opposing swell kaelib. As we mentioned
previously, while the prevailing wind is generally referred to as coming
from the east, that is not its direction in the Western system of refer-
ence. The direction recorded by Westerner observers is approximately
208 north of east. Thus, these charts can be compared to Map 4.2 by
rotating the chart illustrations by about 208 counterclockwise. In
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Figure 4.14 Rebbelith.
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comparing them, it is important to keep in mind that the region depicted
covers over 750,000 sq. km. The distances between Bikini and Ronge-
lap or between Ailinglaplap and Jaluit, for example, are each about 130
km. The positions of the atolls relative to each other are remarkably
accurate, given that they were determined without technological aids
and that vast open ocean spaces are involved. We can, of course, make
no comparison of the swell positions or the positions of the atolls
relative to them, as the swells are not marked on our map.
Although Figure 4.14b contains far fewer swells, both charts contain

several repetitions of the inward bending rilib shown as arcs and as
wedges. Another feature that they share is a line from Kili to Ebon, said
to be the okar or direct route between them. Also, on each of the charts,
there is a prominent angle formed between the straight rilib and a
northeasterly line emanating from just below Mili. While the angles
shown are not equal to each other, they are striking in their similarity to
each other, and to some of the prominent angles on the mattang.
Figures 4.15a, 4.15b, 4.16a, and 4.16b are meddo. Although they

differ, all four of them are renderings of the same subregion. (Figure
4.17 is an actual photograph of the artifact drawn in Figure 4.16a.) All
of thesemeddoare, essentially, blowupsof the region in the lowerportion
of the rebellith shown inFigure 4.14, focusing on the locale offive, six, or
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Figure 4.15 Meddo.
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seven of the atolls. In addition to the atolls and the ever-present rilib and
kaelib, there are other details included on thesemore localizedmaps. On
these, on the approaches to the atolls along the okar, there are also some
specific places that are marked by short cross lines and chevrons. The
cross lines are said to be distance markers showing significant identifi-
able places. The furthest distance marker is where an atoll just becomes
visible on the horizon. The next marker is where land can be seen from
within the canoe. And the final marker is where palm trees become
distinguishable. Since the atolls are quite low, averaging only about
3.7mabovehigh-tide levelwith amaximumofabout9m, thesedistances
range fromabout 16 to 24 km froman atoll. Further, the chevronsmarked
along the okar are said to indicate where the effects of ebb tides can be
seen in the water as they flow out through lagoon entrances.
Early interpreters of the stick charts, who had not benefited from the

reports of discussions with the Marshall Island navigators, believed that
many of the lines and curves on the charts represented currents. This is
now known not to be the case. However, although not included on the
charts, the Marshall Island navigators have considerable knowledge of
the currents in their area. In 1949, to learn from their knowledge, a
zoology professor from Hawaii, who was studying the distribution of
varieties of sponges, interviewed some of the navigators. Part of this
discussion focused on the vicinity depicted on the meddo in Figures
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Figure 4.16 Meddo.
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4.15 and 4.16. There is, they maintain, a quiet current-free sea south of
Ailinglaplap. This, they say is because there is a shoal and, therefore, an
area with comparatively shallow water. As a result, in addition to being
free of current, the region reacts to tide changes in quite the same way
as does a lagoon inside an atoll. That is, there is a channel through
which the rising tide streams in and the falling tide rushes out. This
anomalous region is south of Ailinglaplap extending to a line between
Namorik and Jaluit, and its channel is east of Namorik between
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Figure 4.17 A photograph of the meddo in Figure 4.16a. (Catalogue No. 206188,
Department of Anthropology, Smithsonian Institution.)
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Namorik and Kili. The chevrons on the meddo between Namorik and
Kili might well be related to the effects of the ebb tides through this
channel. In any case, this anomalous region is seen to be specially
prominent on the rebbelilth in Figure 4.14, as well as on the meddo
in Figures 4.15–4.17.
As with the mattang, the stick charts that are maps are used on land

for the preservation and transmission of knowledge. The information
that the navigators learn from them is carried on a voyage, but the
objects themselves are not. Reliance on memory is often found in
oral cultures such as the Marshall Islands culture at the time the charts
were made and used. Those of us in literate cultures, who have come to
depend on the media of literacy, are often both surprised and impressed
by what others are able to commit to memory. For the Marshall Islan-
ders, the artifacts from which they learned are apparently not needed
while at sea. Their contents, or the cues they provide, are committed to
memory, supported by other devices that are also learned as part of
navigational training. One such set of devices are rojen kōklōl (trans-
lated as ‘‘navigational formulas’’ or ‘‘indicator mnemonics’’). These are
used to remember sailing directions and indicator signs for particular
routes. They are said also to have magical properties that help maintain
a high level of confidence during a difficult voyage. Closely related to
these are alinlōkōnwa (translated as ‘‘sailing songs’’ or ‘‘songs from the
stern sheets’’). These are sung by the canoe steersmen, and although
they are relatively short, each can be repeated for many hours. Their
function, too, is to maintain alertness and confidence, while reminding
the navigator of dangers and indicators. In addition, the number of
times a particular song is repeated is used as an aid in measuring
elapsed time and, hence, assists in estimating how much of the course
has been covered.

5 As with other representations of knowledge among traditional
peoples, we are limited in our ability to read the stick charts in

full. Not only do we not share in the Marshall Islands culture, but we
lack the specific training and the shared experiences of the navigators.
We can, nevertheless, recognize that the rebbelith and meddo are planar
representations of particular regions in and around the Marshall Islands,
including what is significant about the regions for the navigators. As
such, they are expressions of the most important mapping concepts. As
with all maps, the creators of the stick charts that are maps have drawn
upon diverse information and a shared navigational tradition to create
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analogical spaces. Within the spaces, physical entities viewed as signif-
icant in their navigational tradition are symbolically represented, and,
most important, relations that may not be seen directly while in the
original spaces are made visually explicit in the analogical spaces.
The mapping concepts evidenced by the rebbelith and meddo are

important. However, it is the mattang and the mathematical and scien-
tific ideas they embody that we consider even more substantial and
more significant. As models of the conceptual framework underlying
the wave piloting system, they not only attest to the fact that such a
framework has been created, but encapsulate the conceptual framework
in a visual rendering. Abstraction, generalization, and idealization all
come into play.
In the history of modern science, understanding of the physical world

and mathematical modeling have been intimately connected. In fact,
geometric and then algebraic representations of physical systems have
been the hallmark of modern science. The linkage is so tight that it is
hard to conceive of the study of physics without the involvement of
mathematical ideas and mathematical descriptors. Why this is so, or
why this should be so, has long been the subject of philosophical
discussions. These discussions have included speculation on whether
this is the nature of the universe, or the nature of the human mind, or
simply the scientific tradition of Western culture. Because it is outside
the modern tradition, the Marshall Islands case offers an unusual contri-
bution that may enrich these discussions.
For this case also, broadly dispersed experience and observations of

natural phenomena are given meaning by being conceptualized into a
coherent, structured system. The system is represented via a model that
simplifies, highlights, and isolates what is considered essential. Most
important, what is selected as essential are the geometric aspects of the
phenomena. Here, the natural phenomena are oceanographic; the
system is a conceptualization of the interplay of land, sea, and wind;
the model is a planar representation. Relative positions and relative
directions become all important. Swells are reduced to curved lines,
and there is attention given to the locus of points where the curves
cross, as well as to the changing crossing angles as the curvature
changes. In short, the system becomes one characterized by geometric
essentials that give rise to geometric implications. And, what is more,
the compact planar representation becomes the vehicle for transmitting
to future navigators the accumulated experience subsumed by the
conceptual system. A basic tenet of modern science is that different
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observers, at different places, and at different times, may make different
specific observations but, none the less, will find the same principles at
work. This premise, too, is present as it clearly underpins the creation,
transmission, and use of this conceptual system.
Made of palm ribs, coconut fibers, and shells, the Marshall Island

stick charts underscore the fact that analogical planar representations,
whether of space or of physical systems and their inner relationships,
are quite independent of writing systems and are not confined to any
particular culture or any particular medium. Consideration of the stick
charts provides us with a deeper understanding of the intellectual
endeavors of the Marshall Islanders, but, in addition, it adds to the
growing realization of the importance of visualization and representa-
tion in the mathematical and natural sciences.

Notes

1. The dictionary definition of a map is quoted from Webster’s New Collegiate
Dictionary, G. & C. Merriam and Co., Springfield, MA, 1973, p. 701. The quotes
from Ptolemy are from p. 61 of Lloyd A. Brown’s, The Story of Maps, originally
published in 1949 and reprinted in 1977 by Dover Publications, New York. The
book is a very readable overview of the history of Western maps. It discusses maps
and mapmaking as closely tied to exploration, trade, and colonialism. World War II
was another major impetus for interest in maps. Also cited in the book are the
contributions to mapmaking of numerous mathematicians, such as Picard, Airy,
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Figure 4.18 A U.S. postage stamp issued in 1990. The stick chart shown is the
rebbelith in Figure 4.14a. (Stamp Design q 1990 U.S. Postal Service. Reproduced
with permission. All rights reserved.)
rebbelith in Figure 4.14b. (Stamp Design © 1990 U.S. Postal Service. Reproduced
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Jacobi, Laplace, Liebnitz, and Newton. Highly recommended for its broad consid-
eration of maps and mapping is The Nature of Maps: Essays in Understanding Maps
and Mapping, Arthur H. Robinson and Barbara B. Petchenik, University of Chicago
Press, Chicago, 1976. Some interesting insights about maps and map-reading are on
pages 149–153 of ‘‘The emergence of a visual language for geological science
1760–1840,’’ Martin J.S. Rudwick, History of Science 14 (1976) 149–195. Maps
are Territories: Science is an Atlas, David Turnbull (with a contribution by Helen
Watson with the Yolngu community at Yirrkala), and Singing the Land, Signing the
Land, Helen Watson (with the Yolngu at Yirrkala) and David Wade Chambers, both
published by Deakin University Press, Gelong, Victoria, Australia, 1989, contain
excellent ideas to help broaden the way we think about maps. They then present as
maps bark paintings of a native Australian group. A recommended discussion of
Inuit maps is ‘‘A cultural interpretation of Inuit map accuracy,’’ Robert A. Rund-
strom, The Geographical Review, 80 (1990) 155–168. Also, an extensive collection
of Inuit maps is in Eskimo Maps for the Canadian Eastern Arctic: Cartographica
Monograph No. 5, John Spink and D.W. Moodie, 1972. A discussion of the spatial
concepts of the Inuit is found on pp. 132–140 in my Ethnomathematics: A Multi-
cultural View of Mathematical Ideas, Chapman & Hall/CRC, New York, 1994.

It is interesting to note that grid systems on maps were used in China in the
second or third century CE. For more about this, see pp. 30–33 in The Genius of
China: 3000 Years of Science, Discovery, and Invention, Robert Temple, Simon &
Schuster, New York, 1986.

2. For further reading on the environment and lifeways of the Marshall Islanders, see
Majuro: A Village in the Marshall Islands, Alexander Spoehr, Fieldiana: Anthro-
pology series, vol. 39, Chicago Natural History Museum, 1949 (Krauss Reprint
Corp., New York, 1966); Leonard Mason, ‘‘Suprafamilial authority and economic
process in Micronesian atolls,’’ chapter 16, pp. 299–329 in Peoples and Cultures of
the Pacific, Andrew P. Vayda, ed., Natural History Press, New York, 1968; and
chapters 1–3 of The Bikinians: A Study in Forced Migration by Robert C. Kiste,
Cummings Publishing Co., Menlo Park, CA, 1974. (According to an article in the
International Herald Tribune [May 21, 1996, p. 7, cols. 5 and 6] the fame of Bikini
atoll was spread by the scant swimsuit named for it by the French designer Louis
Réard at the time of the atomic testing.)

The women’s dress mats are rectangular with sometimes as many as seven
different patterns around the periphery. About fifteen mats are shown in Plates 9,
10, and 11 of Ralik-Ratak (Marshall-Inseln), Augustin Krämer and Hans Never-
mann, Ergebnisse de Südsee-Expedition 1908–1910, G. Thilenius, ed., Part II B,
vol. 11, Friederichsen, de Gruyter & Co., Hamburg, 1938. Discussion and analysis
of strip decorations in general, and those of the Maori of New Zealand and Inca of
South America in particular, are in chapter 6 (pp. 166–183) of Ethnomathematics,
cited above in the notes to section 1.

3. Much of the material in this chapter, particularly in this section and the next, is
adapted from my article ‘‘Models and maps from the Marshall Islands: A case in
ethnomathematics,’’ Historia Mathematica, 22 (1995) 347–370. See that article for
more specific citations and additional references. The article also contains an appen-
dix that may be of special interest to those who wish to pursue further study of the
charts. The appendix summarizes the widespread corpus of stick chart illustrations.
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In all, it cites 103 published illustrations of sixty-nine different charts, including
notes on which illustrations are photos, which are drawings, and which appear to be
similar to each other, although they are different artifacts.
Some useful readings for understanding oceanographic phenomena are Willard

Bascom’sWaves and Beaches: The Dynamics of the Ocean Surface, Science Study
Series, Doubleday & Co., New York, 1964; Wind Waves, Blair Kinsman, Dover
Publications, New York, 1984, pp. 156–167; and chapter 5 in Waves and Tides,
R.C.H. Russell and D.H. Macmillan, Hutchinson’s Scientific and Technical Publi-
cations, London, 1952.
Numerous books are available as an introduction to sailing in Euro-American

sailboats. See, for example, Invitation to Sailing, Alan Brown, Simon & Schuster,
New York, 1968, or chapter 2 in The Lure of Sailing, Everett A. Pearson, Harper and
Row, New York, 1965. A discussion of the outrigger canoe and how it handles
under sail is in chapter 3 of Thomas Gladwin’s East is a Big Bird: Navigation and
Logic on Puluwat Atoll, Harvard University Press, Cambridge, MA, 1970. The
entire book is highly recommended, although it is about a distinctly different navi-
gational tradition; namely, that of the Caroline Islands navigators.
A very good discussion of models is in Ian G. Barbour’s Myths, Models and

Paradigms: A Comparative Study in Science and Religion, Harper and Row, New
York, 1974 (see, in particular, pp. 6–7 and 29–38). Although most of the book is
about computer simulation, the beginning portions of Would-Be Worlds: How
Simulation is Changing the Frontiers of Science, John L. Casti, John Wiley &
Sons, New York, 1997 are devoted to models in general. Most important, however,
is Leo Apostel’s ‘‘Toward the formal study of models in the non-formal sciences,’’
pp. 1–37 in The Concept and Role of the Model in Mathematics and Natural and
Social Sciences, International Union of History and Philosophy of Sciences: Divi-
sion of Philosophy of Sciences, D. Reidel, Dordrecht, 1961. The portion quoted in
this section is from p. 15 of his article. It is quoted with the kind permission of
Kluwer Academic Publishers.
Valuable discussions of the interpretation and use of stick charts are found in

William H. Davenport’s ‘‘Marshall Islands Navigational Charts,’’ Imago Mundi, 15
(1960) 19–26, and his ‘‘Marshall Islands Cartography,’’ Expedition (Bulletin of the
Museum of University of Pennsylvania), 6 (1964) 10–13; M. W. de Laubenfels,
‘‘Native Navigators,’’ Research Review (Office of Naval Research), June 1950, pp.
7–12; David Lewis, We, the Navigators, University Press of Hawaii, Honolulu,
1972; Captain Winkler, ‘‘On sea charts formerly used in the Marshall Islands,
with notices on the navigation of these Islanders in general,’’ pp. 487–508 in Annual
Report of the Smithsonian Institution for the Year Ending June 30, 1899, Washing-
ton, DC; and the book by Krämer and Nevermann included in the notes to section 2.
(The quotation from the navigators about the general applicability of the mattang is
from p.10 of de Laubenfels’ article.)
The mattang in Figure 4.5 is in the collection of the Smithsonian Institution,

Department of Anthropology, Catalogue No. 206187. It was photographed from the
article by Winkler cited above (Plate VI).
In 1902, A. Schück published a compendium of drawings of all Marshall Islands

stick charts that he had located in museums and private collections. Several of my
figures follow his drawings. The mattang in Figures 4.6a–4.6c, are after Schück’s
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figure 11, Winkler’s Plate XIIIa, and Davenport’s figure 3, respectively. Those in
Figures 4.7a–4.7e, are after Schück’s figure 7; figure 2 in Henry Lyons’ ‘‘The
Sailing Charts of the Marshall Islanders,’’ The Geographical Journal, 72 (1928)
325–328; Plate III in N.O. Hines’ ‘‘The Secret of the Marshallese Sticks,’’ Pacific
Discovery, 5 (1952) 18–23; and Schück’s figures 39 and 15, respectively.

4. For some references to discussions of the interpretation and use of the stick charts,
see the notes above for Section 3. The discussion of the current-free sea south of
Ailinglaplap is in M.W. de Laubenfels’ ‘‘Ocean currents in the Marshall Islands,’’
Geographic Review, 40 (1950) 254–259. The navigational formulas and sailing
songs are discussed in William H. Davenport’s ‘‘Marshallese folklore types,’’ Jour-
nal of American Folklore, 66 (1953) 219–237.

The rebbelith in Figures 4.14a,b, are after Schück’s figure 27 and Winkler’s chart
II. (Figure 4.3a is the same as Figure 4.14a but without labels.) The meddo in
Figures 4.15a and 4.15b are after Schück’s figures 43 and 42, and Figure 4.16b is
after his figure 36. Figures 4.16a and 4.3b are drawings of the meddo in the photo in
Figure 4.17.

5. The linkage between mathematical modeling and understanding of the physical
world is the major theme of the well-known Mathematics and the Physical
World, Morris Kline, Anchor Books, New York, 1963. His chapters 1 and 2 contain
a general overview, which is then substantiated throughout the rest of the book. See
also his summary chapter 27.

The acknowledgment of the importance of visualization and representation in the
sciences and in mathematics and mathematics education has been stimulated by the
advent of computer technology. Although they were static, well-conceived
diagrams, drawn on paper or blackboards, have always played a crucial role in
texts, classrooms, and professional presentations. An important re-examination of
the role of diagrams in Greek mathematics is The Shaping of Deduction in Greek
Mathematics: A Study in Cognitive History, Reviel Netz, Cambridge University
Press, Cambridge, 1999. See also his ‘‘Greek mathematical diagrams: Their use and
their meaning,’’ For the Learning of Mathematics, 18 (1998) 33–39.
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CHA P T E R 5

Systems of Relationships

1 Relations are fundamental to mathematics and mathematical struc-
tures. Any specified property linking a pair of objects is a relation.

‘‘Less than,’’ ‘‘more than,’’ ‘‘four times as much as,’’ ‘‘equal,’’ or
‘‘unequal’’ are properties that apply to number pairs, but other relations,
such as ‘‘taller than,’’ ‘‘lighter than,’’ ‘‘older than,’’ ‘‘sister of,’’ in
addition to ‘‘equal’’ or ‘‘unequal,’’ are properties that can apply to
many different things, as well as to people. In a relation such as ‘‘taller
than,’’ whether applied to objects or to people, a physical attribute is
being compared. However, a relation such as ‘‘of higher rank’’ is differ-
ent in type; it involves a judgment that is solely cultural. It differs from
culture to culture and even has no meaning in some cultures.
In mathematical systems, as well as in systems of social organiza-

tion, there are complexes of relations that involve several relations, sets
of items to which they apply, and, moreover, relations among relations.
It is their interconnectedness and interdependence that create from the
parts an overarching entity that is deemed a system. In describing a
system, whether a social or mathematical system, we must specify the
set of objects being discussed; we must be clear about what charac-
terizes the relations; and we must be cautious that the relations that
make up the system are not conflicting.
Here, we begin with a discussion of a single relation—the equality

relation—first exploring its common and mathematical meanings and
then enlarging to its meaning and use in a system of social organization
among the Basque of Sainte-Engrâce. Then, turning to the Tonga of
Polynesia, we view a system of status relations that, in fact, contains an
internal contradiction. (We will also see how that contradiction is
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resolved.) Lastly, our discussion of the logic of relations in systems of
social organization will move us to Africa and to the elaborate Gada
system of the Borana who live in Ethiopia near its border with Kenya.
Throughout, we emphasize that it is the clear and formal statements of
these systems by the people who live them that enable our discussion.
That is, it is not we who are imposing the logic on observed behavior.
Rather, it is the people in the cultures who are articulating the proper-
ties of the relations that we can then discuss in terms familiar to us.

2 In mathematics, the equality relation is one of several that are
formally categorized as equivalence relations. An equivalence

relation has three specific properties: symmetry, reflexivity, and tran-
sitivity. Symmetry means that if a is related to b in some way, then b is
related to a in that same way. (With equality of numbers, for example,
that means that if a ¼ b, then b ¼ a. A contrasting example is the
relation greater than which is not symmetric: if a is greater than b, then
b is not greater than a.) Reflexivity of a relation means that the relation
holds between an element and itself. (Numerical equality does have this
property: a ¼ a. For greater than, we cannot say ‘‘a is greater than a’’,
and so the relation does not have the property.) The third property,
transitivity, specifies that if a is related to b in some way, and b is
related to c in the same way, then the relation also holds between a
and c. (For the equality of numbers, this is true: if a ¼ b and if b ¼ c,
then a¼ c. For greater than, although the former two properties did not
hold, this property does; that is, if a is greater than b, and b is greater
than c, than a must be greater than c.)
An equivalence relation, familiar to those who have studied geome-

try, is the congruence of triangles in the plane: (i) if triangle A is
congruent to triangle B, then B is congruent to A; (ii) triangle A is
congruent to itself; and (iii) if triangle A is congruent to triangle B, and
triangle B is congruent to triangle C, then triangle A is congruent to
triangle C. And another equivalence relation has already been encoun-
tered and used in previous chapters; it is the one involved in modular
arithmetic. We used, for example, the modular equivalence 15 ¼
3(mod 4). In this relation, the equal sign does not have the same
exact meaning as in our ordinary numerical equality, but the relation
represented does share the three properties defining an equivalence
relation.
We often pass easily from one form of mathematical equivalence to

another, but, beyond numerical equality, which we have incorporated
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from our earliest learning, we do have to be cautious as to what speci-
fically is meant. Each time a new set of mathematical objects is encoun-
tered (e.g., sets, groups, modular numbers, complex numbers, matrices,
or vectors), we must clarify what is meant by two of the objects being
equal; that is, we must specify a new equivalence relation.
In common American-English usage, the connotations of equality

and equivalence differ: equality ‘‘implies the absence of any differ-
ence,’’ that is exactly the same, while equivalence implies that,
although there may be differences, ‘‘they amount to the same thing.’’
For the political realm, where equality is so central to the Euro-Amer-
ican views of democracy, justice, and fairness, equality is used mainly
in regard to the rights or treatment of people vis-à-vis government,
institutions, or businesses. There is a long and ongoing history of
philosophical and legal discussions of equality. Still, however, when
used in the sociopolitical realm, there are deep and significant disagree-
ments with even common catchphrases meaning different things to
different people. For example, in recent United States history, the
phrases ‘‘separate but equal,’’ ‘‘equal pay for equal work,’’ and
‘‘equal opportunity’’ have been used, argued, interpreted and reinter-
preted.
Among the Basque of Sainte-Engrâce, France, there is, in the realm

of social organization, a concept bardin–bardina translated into
English as ‘‘equal–equal.’’ This concept of equality is markedly differ-
ent from ours. In contrast to our mathematical or sociopolitical ideas of
equality, the Basque concept is intertwined with the idea of circularity
and is dynamic rather than static. Its focus is on systematizing the
interactions of the group members in order to provide mutual assistance
and receive mutual benefit. Examining their concept of equality
enlarges our view of this seemingly simple word.

3 The community of Sainte-Engrâce is in the Basque province of
Soule, one of the nine Basque provinces in the Pyrénées-Atlan-

tique which straddle the French–Spanish border. Although the exact
origins of the Basque are unknown, it is generally agreed that they
predate the French- and Spanish-speaking peoples in the region around
them by, perhaps, thousands of years. In the 1970s, at the time of a
study of Sainte-Engrâce, there were about two million Basque, with
about three-quarters of them living in the Basque provinces in Spain,
one-eighth in the Basque provinces in France, and the rest living in
other areas of the world. Having their own language, a rich history,
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their own political and social organization, and long-held traditions, the
recent history of the Basque has been marked by conflict with the
nation states that encompass them. Nevertheless, the Basque way of
life continues, particularly in a place like Sainte-Engrâce, which, situ-
ated in the high mountains, is one of the most geographically and
socially isolated communities in the region. Although the population
declined from about 1000 people in the late 1800s to about 375 in the
1970s, the community remains self-reliant, centering on small farms
and shepherding.
The mountains that surround the Sainte-Engrâce region range from

about 1000 to 2500 m. The Basque conceive of the region in which they
live as enclosed by a circle of mountains with their households forming
another circle within that. Whether or not this is actually the case, this
spatial model forms the basis for their idea of circularity that pervades
many of their interactions. In this circle, everyone has neighbors to the
left and neighbors to the right. No one is first, and no one is last.
Everyone’s participation is involved in keeping the circle unbroken.
The Basque concept of equality is underpinned by two operational

principles that structure relationships so that everyone both gives and
receives. The principles are referred to as üngürü and aldikatzia. The
former is translated into English as ‘‘rotation,’’ in the sense of ‘‘moving
around a centre,’’ and the latter as ‘‘‘serial replacement’’ as well as
‘‘alternation.’’ How these mathematical ideas apply in this context and
how they relate to equality are best described in terms of their operation.
A fundamental circular exchange, which was in effect until the

1960s, was the giving of blessed bread. Each household regards its
neighbor to the right as its first neighbor. (The directions right and
left are as viewed from the center of the circle so that right is clockwise
and left is counterclockwise.) The giving of bread took place weekly
and was thought of as being given from first neighbor to first neighbor.
That is, each Sunday, a woman from one particular household brought
two loaves of bread to the church where it was blessed and partially
used in a church ritual. Then, before sunset, a portion of the bread was
given by her to her first neighbor. The following week the first neighbor
was the bread giver, and her first neighbor was the bread receiver. Thus,
the giving (and receiving) of bread moved around the circle serially,
taking about two years to complete one cycle of about 100 households.
While each household was both a giver and receiver of bread, this mode
differed from simple reciprocity; only if there were a total of two
households would neighbors directly reciprocate.
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To describe more succinctly the foregoing exchange as well as those
to come, we identify the households in the circle as H1, H2, …, Hn

where the numbers in the subscripts reflect the position of the house-
holds in the circle, and n is the total number of households. Thus, if
some Hi (where i ¼ 1, or 2, or 3, … or n) is the bread-giver on a
particular Sunday, she gives to her first neighbor, Hi11. The next
week, Hi11 gives to Hi12. Because the households are in a circle, the
arithmetic in the subscripts is mod n. If, for example, there were, in all,
only five households, the circle would contain H1, H2, H3, H4, H5, and
on H5’s right is H1, her first neighbor; that is H511(mod 5) ¼ H1. (Modular
arithmetic was introduced in Section 1.2 and then used again in Chapter
3.)
In a more extensive, ongoing, cooperative arrangement, the

exchange among neighbors relies on the same circular model, but
this exchange involves several first neighbors. The first first neighbor
of Hi is, as in the bread-giving, Hi11, the neighbor to the right; the
second first neighbor of Hi is the neighbor on the left (Hi21); and the
third first neighbor is the next on the left (Hi22). Thus, for example,
when there is a death in household Hi, the household calls upon its first
neighbors for assistance. As a group, Hi22, Hi21, and Hi11 help to keep
the household going, but Hi11 provides particular assistance in specific
preparations for the funeral. And, on the occasion of a home birth for
Hi, it is a woman of household Hi21 who serves as the midwife (see
Figure 5.1).
Planting, harvesting, threshing, sheep shearing, and pig slaughtering

all require the work of more than one person, and so, there too, the first
neighbors are called upon. These assistances are directly reciprocated
by providing food and drink and by the giving of small gifts, but,
primarily, the reciprocation is serial, that is, by assisting, when called
upon, as the first neighbors of others.
A particularly interesting result of this mode of interaction in the

farming yearly round is that households must schedule their work with
the obligations of others, and to others, in mind. Also, for the same
chore, each household gets to work with different groups of households
and to play different roles within those groups. Hi, for example, works
in groups (Hi22, Hi21, Hi, Hi11), (Hi23, Hi22, Hi21, Hi), (Hi21, Hi, Hi11,
Hi12), and (Hi, Hi11, Hi12, Hi13), taking the roles of primary household,
and first, second, and third first neighbors, respectively. And, to avoid
causing conflicting obligations for himself or any of his neighbors, Hi

cannot schedule his household’s work on the same day as the work of
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Hi23,Hi22,Hi21,Hi11,Hi12, orHi13 because, for example,Hi’s third first
neighbor (Hi22) is Hi23’s first first neighbor, and his first first neighbor
(Hi11) is Hi13’s second first neighbor.
By far, the most intricate cooperative arrangement involves the shep-

herding and cheese-making groups that work and live together during
the summer months. These groups of households share in the ownership
of pasturage sites in the mountains. The origin and practices of these
groups are part of a long tradition that was described in writing as early
as the 1600s. Prior to the 1900s, the ideal ownership group consisted of
10 households, each contributing 50 to 60 ewes and 2 rams to the
summer flock and one man to the working unit. The flock of about
550 sheep had to be driven up into the mountains in late May, watched
over until they were driven down to the valley for shearing in July, then
driven back up to be watched over until returning to their valley homes
at the end of September. Additional important aspects of the May to
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Figure 5.1 The first neighbors of H5 and H2 where the number of households is nine.
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July work were the twice-daily milking of the sheep and the making of
cheese from the milk. Different roles were defined that encompassed
the various jobs that needed doing, and a formal system of rotation was
used to insure that everyone was equal in terms of work contributed, in
terms of cheeses produced, and in terms of status.
As contrasted to the first neighbor obligations, which are predicated

on the model of households physically positioned around the periphery
of a circle, the model for the shepherding and cheese-making coopera-
tives consists of a multiplicity of abstract cycles. The households, first
of all, were assigned a specific order in the ownership group that
remained unchanged from year to year. For the May through July
period, for the working group of ten men, there were six explicit
roles which required six of the men to be together at the mountain
site. Thus, calling the households’ representatives H1, H2, …, H10,
and the work roles ranked in status order R1, R2, …, R6, once the
sheep were safely at the mountain site, assuming the household count
started with H1, the assignments were: H1 ! R1, H2 ! R2, …, H6 ! R6,
and H7, H8, H9, H10 returned home. After 24 hours, the rotation would
begin: H7 would ascend the mountain, keeping to the right, and then H1

would descend, keeping to the left. Their ascent and descent are
conceived of as taking place in a circle. Upon his arrival on the moun-
tain, H7 would take on role R6 and each of the others would move up
one role: H2 ! R1, H3 ! R2, …, H7 ! R6. Similarly, every 24 hours, at
the end of the day, there would take place the rotation up and down and
the moving up of one role by the others. Thus, on day i, those on the
mountain would be Hi, Hi11, Hi12, Hi13, Hi14 and Hi15 in roles R1

through R6, respectively. With ten men cycling through this rotation,
the subscript arithmetic is mod 10, and so, more precisely, the assign-
ments areHi(mod 10)!R1,Hi11(mod 10)!R2,Hi12(mod 10)!R3,Hi13(mod 10)!
R4, Hi14(mod 10) ! R5, Hi15(mod 10) ! R6 (see Figure 5.2). On, say, the
eighteenth day, those on the mountain would be H8, H9, H10, H1, H2,
and H3 in roles R1, R2, …, R6, respectively. Out of every 10-day period,
each man spent 6 consecutive days on the mountain and 4 days at home.
Generally, fromMay tomid-July, each of the tenmen carried out each of
the six roles about six times with, for reasons of equity to be explained
later, an extra turn at R1, for H1 and H2.

From the time of shearing in July until the end of September,
because milking and cheese- making were complete, the number of
men needed at the mountain site was reduced to two with just two
roles, which we will call R1

0 and R2
0. For this, two men remained on
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the mountain for 6 consecutive days, alternating daily between roles
R1

0 and R2
0. After the 6-day period, the pair descended the mountain

and the next pair in the cyclic order ascended. Thus, if the period
began with H1 and H2 in roles R1

0 and R2
0, then the next day H2 ! R1

0

and H1 ! R2
0, and so on until, on the 7th day, H3 ! R1

0, while H4 !
R2

0. Since there is a cycle of ten men, in groups of two, for sets of 6
days, and alternating roles, the general expression for who is on the
mountain in what role on the ith day is more complicated than the
previous generality. In general, on the ith day of this second phrase, if
i is odd, Hð2bði21Þ=6c11Þðmod10Þ is on the mountain in role R1

0. If i is even,
he is in role R2

0 . The collection bði21Þ=6c represents the value of the
greatest integer less than, or equal to, (i 2 1)/6. For example, if i ¼ 9,
the value is 1; for i ¼ 23, it is 3; and for i ¼ 38, the value is 6. On
these days, the assignments would be H3 in role R1

0; H7 in role R1
0 and

H3 in role R2
0, respectively. Their partners, H4, H8, H4, therefore, are in

the other role, that is in R2
0, R2

0, and R1
0. In all, during a 30-day

period, each man spent 6 consecutive days at the mountain site,
three of them as R1

0, and three as R2
0, and 24 days at home. Usually,

each man had two of these 6-day turns on the mountain.
By these rotations, the men’s contributions were the same in terms of

time spent at home, time spent at the mountain site, time spent in each
of the six roles R1, …, R6, and time spent in the roles R1

0 and R2
0. The

procedure also insured receiving an equal number of cheeses made
from the milk of the sheep. These cheeses were an important part of
a household’s annual food supply. One responsibility that went with the
highest status role (R1) was making two cheeses and watching over the
cheeses that others had previously made. With the exception of the first
cheese made on the first day and the first cheese made on the second
day, the cheeses made by a person were for his household’s use during
the year. (The first cheese was sold outside of the community with all
the members of the group sharing equally in the profit, and the other
was given to the priest or guard of the forest. The extra turns noted
before of H1 and H2 being R1 and, hence, of making more cheese, were
to compensate for these cheeses.) In general, a cheese weighed about 8
or 9 kg. With six turns at being R1 and making two cheeses on each of
these days, each person took home about 100 kg of cheese.
A larger cycle in which the annual cycles are embedded is the multi-

year cycle. We noted that the ten cooperating households are in a fixed
order—H1, H2, …, H10. The order remains fixed throughout time, but
which household representative starts a year as R1 advances by one
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position each year. That is, in a hypotheticalYear 1,H1,H2,…,H6 are the
first subgroup at the mountain site, but then in Year 2, the first subgroup
would be H2, H3, …, H7, and so on, from year to year. (To reflect this in
our previous statements involving Hi, i should be modified to i1 Y2 1
where Y is the year number of the cooperative’s operation.)
Finally, we introduce the crucial issue of equality of status, which

becomes particularly significant for groups smaller than the ideal of ten.
The six roles, which we have simply been referring to as Rs, from
highest to lowest status are: R1 ¼ woman of the house; R2 ¼ master
shepherd; R3 ¼ servant shepherd; R4 ¼ guardian of non-lactating ewes;
R5 ¼ guardian of lambs; and R6 ¼ female servant. R1 is the cheese-
maker and is also in charge of cooking and cleaning the hut in which the
six men live. R6 functions as his servant in the household chores. R2, the
master shepherd, organizes and directs the work of R3, R4, and R5.
Because there is a decided hierarchy in the roles, the rotation is of
special significance in preserving equality. Having ten men rotate
through the six roles insures that no status hierarchy is consistently
imposed. In particular, whoever serves as house servant (R6) when
some Hi is woman of the house (R1) will serve as woman of the
house (R1) when that Hi is house servant (R6). And the Basque further
note that this Hi will never be above those whom his house servant (R6)
will be above when he serves as woman of the house (R1). This is seen
in Figure 5.2 where, for example, on day 1, H1 and H6 are in roles R1

and R6, respectively, but on day 6, their roles are reversed. And sinceH6

is above some or all of H7, H8, H9, H10 on days 2–6, H1 is never above
any of them. In general, still using mod 10 subscript arithmetic, on day
i, Hi ¼ R1 and Hi15 ¼ R6, but on day i 1 5, their roles are reversed:
Hi15 ¼ R1, Hi ¼ R6, also, since Hi15 is above Hi16, Hi17, Hi18, and Hi19,
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Figure 5.2 The rotation of ten households through six roles. (Subscript arithmetic is
mod 10.)
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Hi is never above them. Similarly, Hi15 is never above Hi11, Hi12, Hi13,
and Hi14.
After 1900, the number of households in the cooperatives decreased

as a result of the overall decrease in the number of community house-
holds. Even with fewer households in each cooperative, cycling
through the various roles would still insure equality of time and work
contributions. The two criteria for the equality of status, however, could
not be met without adjusting the number of roles. Using a bit of algebra,
we can find a relationship linking n, the number of households in the
cooperative, with r, the number of roles necessary to meet these
criteria. Both status criteria are satisfied if 2r2 2 ¼ n; neither criterion
is met if n is less than 2r2 2; and only the stipulation of who should not
be above whom holds if n is more than 2r 2 2.
The ideal Basque situation, where r ¼ 6 and n ¼ 10, clearly satisfies

both status criteria and the relationship 2r 2 2 ¼ n. And, while we do
not know how the Basque arrived at their numbers, the Basques also
knew that there could be at most five roles when there were eight
households, four roles when there were six households, and three
roles when there were four households. To accommodate odd numbers
of households and the situations where there were more than the neces-
sary minimum of households, they loosened the stipulation of the
complete role reversal of woman of the house and house servant
(that is, they used an n greater than, rather than equal to, 2r 2 2).
The number of roles was reduced in about 1900, from six roles to
five roles by deleting R4, and then in about 1940, they were further
reduced to four roles by deleting R5. In the 1960s and 1970s, they were
still further reduced by either reassorting the functions into three newly
titled, but still hierarchically ranked roles, or by creating only two roles
by combining into one the master ranks R1 and R2, and into another the
servant ranks R3 and R6.
Thus, we see in the Basque concept of equality, a relation that is not

static but is, rather, a dynamic process of interaction involving rotation,
serial replacement, and alternation. An essential feature of the system-
ized interactions is that the participants know what is expected of them
and what to expect from others. That is, the actors in the process move
in synchronization, doing different things at different times, but
together making up a whole. If one were to stop the process at an
arbitrary time, there would be inequities in what has been contributed,
what has been received, and who is superior to whom. But, just as a
circle is enclosed by a never-ending line, the process of creating an
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equal–equal relation continues throughout the seasons and throughout
the years.

4 Quite different from the Basque concern that there not be fixed
status differences, the Tongans of Polynesia emphasize status,

rank, and hierarchy. For the Tongans, knowing who is above whom
is paramount; the hierarchy is defined by a formal system of inequality
relations.
In some mathematical systems, as well as in some social systems,

inequality relations play a significant role. Before seeing the expres-
sion of these relations among the Tongans, let us look at the
concepts of inequality, order, and ranking more generally. In mathe-
matics, inequality extends beyond the single relation ‘‘a is not equal
to b,’’ and includes comparatives, such as ‘‘a is greater than b’’ or
‘‘a is less than b.’’ It is these comparatives that enable the imposi-
tion of order on a set of elements. In general, in common daily
activities, we are probably far more concerned with numerical
inequalities than with equalities. When I go to make a purchase
and have, say, $7.50, I do not say that I will buy the item if the
cost equals $7.50, but, rather, that I will purchase it if the cost is
less than or equal to $7.50. I drive through a road underpass only if
its height is greater than the height of my vehicle. The algebra of
inequalities for the real number system (that is, for the infinite set
of numbers that can be expressed in decimal form) is different from
the algebra of equalities. Here, however, we need only concern
ourselves with a few basic ideas that link inequalities to order,
and order to hierarchy and ranking.
The concept of order has already been encountered in earlier chap-

ters. In Chapter 1, an ordered pair of numbers (a,b) was first used to
identify the destiny spirits in the Caroline Islands (see Section 1.2). It
was noted that in each pair which number was written first and which
second was significant, as well as the values of the numbers. Earlier in
this chapter (Section 4.3), the roles taken on by the men in the Basque
shepherding group while on the mountain were said to be ranked. To
reflect the ranking order, we introduced integer subscripts and identi-
fied the roles as R1, R2, …, R6.

Thus, the words first and second, and subscripts 1,2, …, 6, have
already been used in discussing order because the positive integers
exemplify the concept. The positive integers are said to be simply
ordered or linearly ordered. Using the relation less than, they
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satisfy an axiom called the Law of Trichotomy, which states that for
any two integers, a and b, one and only one of the following hold:

(i) a is less than b, or

(ii) b is less than a, or

(iii) a is equal to b.

Also, for the positive integers, the less than relation has the transitivity
property; that is, if a is less than b, and b is less than c, then a is less than
c. It is these two—the trichotomy law and transitivity—that character-
ize order.
For the integers, we could, and often do, involve the relation greater

than as well as less than, since the statements b is greater than a and a
is less than b are equivalent. The trichotomy stipulation then is that a is
less than, greater than, or equal to b. And, in addition to integers, the
concept of order can be extended to other sets of items. For example,
the points on a straight line are ordered; for any two points on the line,
one is to the left, or the right, or coincident with the other. And, if point
a is to the left of point b, and b is to the left of c, then a is to the left of c.
For the collection of letters we call the English alphabet, we stipulate

an arbitrary order; namely, a, b, c, d, …, z. We carefully teach that order
along with the names and shapes of the letters. Hence, to users of this
alphabet, what is meant by alphabetical order seems obvious. It is only
when we encounter collections of letters from the alphabet of another
culture, such as the collection a, d, m, v, that we realize there is nothing
obvious about alphabetical order. Military ranking systems are also
learned, arbitrary orders. For example, consider the command structure
of the U.S. Army. There are privates, corporals, sergeants, lieutenants,
captains, majors, colonels, and generals. Just as the words are learned,
so are their relative positions in the hierarchy. Since both alphabetical
order and the military order are linear orders, both satisfy the trichot-
omy law and transitivity.
Clearly, not all collections are ordered. In mathematics, the elements

contained in collections referred to as sets have no intrinsic order. For
some sets, an arbitrary order or ordering relation is specified. As we
noted, for the positive integers and for the real numbers, the ordering
relation is less than. For some collections, no ordering relation is
possible. One such case, for those who have encountered it, is the
complex number system. Another instance is the dates in the Balinese
wuku year on the dates in the Maya Calendar Round (both discussed in
Chapter 3). Neither satisfy the trichotomy law—these dates cycle, and
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so, for any pair of dates, each date in the pair comes both before and
after the other. As a last example, consider a competition between
teams A, B, and C in which a ranking is to be based on who beats
whom in games played between pairs of teams. Suppose two games are
played in which A beats C, and then C beats B. This could only lead to
partial ranking because there is no information about what the outcome
would be if A played B. However, if A and B did play, with the
outcome that B beat A, no ranking would be possible—although the
trichotomy law is satisfied, transitivity is not. Alternatively, if A won,
then both the trichotomy law and transitivity are satisfied, and the rank
order is A, C, B.
With these ideas in hand, we turn to the ranking system of the

Tongans. It is of particular interest because it involves the interrelation
of several ranking principles.

5 The Tongan archipelago in the South Pacific (see Map 1 in Chapter
4) consists of about 150 islands, many of which are uninhabited. In

all, the population of about 100,000 people inhabits a land area of about
700 sq. km (270 sq. miles). Tonga lies between Samoa and Fiji.
Although culturally distinct, and with related but different languages,
the three are linked in a number of social exchanges.
The Tongan concern for ranking is deeply embedded in the culture,

as evidenced by their language and all of their interpersonal relation-
ships. The words to use when speaking to someone; the attitude to have
toward them; mutual expectations and responsibilities; ownership and
the distribution of goods; roles in ceremonies; who has the say over
matters of naming, marriage, and death rituals; all of these and more are
determined by relative ranks. What makes the system particularly
complex is that it contains three subsystems that are in force simulta-
neously. One subsystem is a formal ranking of those within a kin group;
that is, of those related through descent. Quite separate is a ranking of
named social groupings, which applies across the culture. And also for
the culture as a whole, there is a ranking of those who govern. The latter
two are easiest for us to state, although there is considerably more detail
within each than is included here. In the governing ranking, there is a
king who outranks the other chiefs who outrank the ceremonial atten-
dants who outrank the commoners. Cutting across the ranks of chiefs
and commoners are ranked title-holding groups. Not everyone is part
of, or interested in, this subsystem. These named groups have political
and ceremonial functions and are of importance primarily to those
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involved in seeking or exercising governing powers. For a Tongan,
setting and context determine which of the subsystems dominate in
any particular circumstance. At a funeral, for example, kin ranking is
of paramount importance, while at a kava drinking ceremony, it is the
ranked titles that prevail.
Here, we look primarily at the ranking subsystem that applies to kin.

We will, however, return to the governing ranking to discuss a problem
that arises from the interplay of these two subsystems.
The kin ranking relies on three characteristics: relative generation;

relative age; and gender. The fundamental relations are:

1. Within the same generation, sisters outrank brothers.
2. Within the same generation and same sex, elders outrank those who

are younger.
3. A father and his kinsmen outrank his child who outranks the mother

and her kinsmen.

To symbolize the outranks relation, we borrow the greater than
symbol. In this shorthand, the first relation above can be written as
Si . Br (sister outranks brother); the second as E . Y (elder outranks
younger); and, for the last, Fa . C . Mo (father outranks child who
outranks mother). As with greater than, the outranks relation is not
reflexive and not symmetric, but, where it applies, it is transitive; that
is, if A outranks B and B outranks C, then A outranks C (if A . B and
B . C, then A . C).
When two characteristics are involved, we form a composite repre-

sentation containing both. That is, for example, reading from right to
left, SiE would read elder sister. Then, assuming four siblings (two
sisters and two brothers), relations within a single generation of siblings
can be summarized as:

SiE . SiY . BrE . BrY: ð1Þ
These composites can be extended to include three characteristics. For
example, FaSiE would read elder sister of father so that

FaSiE . FaSiY . Fa and Mo . MoBrE . MoBrY: ð2Þ
Thus, limiting ourselves to the perspective of the children, combining
the generations,

FaSiE . FaSiY . Fa . SiE . SiY . BrE . BrY

. Mo . MBrE . MBrY: ð3Þ
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Additional siblings in both generations could be added easily, but their
gender and relative ages would have to be known or assumed.
In some traditional Western families, when daughters learned the

roles of their mothers, they became mothers’ helpers in the house-
hold. They learned, for example, to cook for their fathers and broth-
ers, as their mothers did. In Tonga, however, this is definitely not the
case. A female must not prepare food for her brother; it is he who
cooks for her. In general, brothers learn to exhibit extreme respect
for their sisters. Notice in (3) that, with respect to a young or grown
child, it is the father’s eldest sister who is the dominant person. It is
she who has the say in issues of naming and of marriage. And, at a
funeral, she dresses distinctively, distributes the funeral goods, and
has first choice of the goods that are distributed. For a woman, her
lowest status is as a wife and mother, while her highest status is as a
sister and an aunt.
To view the relationship of a person to those in the generation below,

the person’s gender must be considered. For a woman, we know that
she is below her children, but as an aunt, she outranks her nieces and
nephews. If, however, the individual is a male, he is, as we already
know, above his own children. His brothers’ children are classified with
his own, and so he is above them as well. His sisters’ children, however,
are above their mother who, as we already know, are above their
brothers. And among the sisters’ children, it is the eldest daughter
who outranks the others. Thus, a male has particular obligations to
his sisters’ children, and his eldest sister’s eldest daughter is of most
importance.
As for relative ranking among what we call cousins, recall that

children have the same ranking relation to parents’ kinsmen as to
parents. Hence, one is outranked by cousins on one’s father’s side,
while outranking cousins on one’s mother’s side. And within the
cousins, one’s father’s eldest sister’s eldest daughter ranks the highest,
and one’s mother’s youngest brother’s youngest son ranks the lowest.
The rankings are of importance, for the most part, in regard to one’s

own generation and to the generation above and the generation below.
Generations, however, are interwoven so that, for example, a woman
may be a daughter, sister, and mother, while her mother, in turn, is a
daughter, sister, and mother, and similarly, her daughter links to yet
another generation. The obligations, behaviors, and responsibilities
based on kin ranking primarily come into play in the realm of personal
goods and services and decisions and ceremonials surrounding life
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passages. Inheritance of houses, lands, and titles, for example, does not
fall within this subsystem.
Although largely there is no conflict between the subsystems, a

problem arises for the king. The problem is that in the kin ranking
subsystem, his sisters and his sisters’ children outrank him and his
children. This can interfere with the king’s dignity and honor and
can create the potential of a challenge to his or his childrens’
power. The Tongan solution is that a king’s sister is not permitted
to marry, or a spouse must be found for her such that her children
will fall outside the Tongan system. At the start of this section, we
noted that Fiji, Tonga, and Samoa were linked in some social
exchanges. One important linkage is that when a high-ranking
female in Samoa must be ‘‘married out,’’ she marries a Tongan,
while the sister of a Tongan king marries a Fijian. Her spouse is
chosen from a chiefly line among Fijians, but his children are
outsiders to the Tongan power structure. In effect, for purposes of
finding a solution to the dilemma, the Tongan system is embedded
in a larger system.

6 For another system of social organization, quite different from that
of the Basque and Tongans, we move to Africa and the Gada

system of the Borana of Ethiopia. The system is extensive: it encom-
passes the philosophical, ritual, and political life of the group. The
system particularly attracts our attention because of its formality, the
interplay within it of linear and cyclic components, and its clear articu-
lation by Borana historians. Furthermore, in Gada, we see how a
conceptual model is superimposed on reality. In contrast to the previous
sections in which the particular relations of equality and inequality
were highlighted, here, our emphasis is on viewing the overall system
as a complex of relations with interconnections among them.
The Borana are a branch of the Oromo people who live primarily in

Ethopia. In all, there are about 15 million Oromo who speak related
dialects of the Galliñña language. Some branches other than the
Borana, are the Macha, the Guji, the Afran Kallo, and the Wollo.
Most of these groups follow some version of the Gada system. Our
discussion deals only with the practices of the Borana who live in
Sidamo province in Ethiopia and south into Kenya (see Map 5.1).
They largely depend on cattle herding, and, since the land is arid,
there is considerable attention devoted to wells and water.
Basic to the Gada system are consecutive grades, through which,
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theoretically, all males pass, and named classes, which refer to those
who are in the grades. The distinction between grades and classes is
significant and crucial to our understanding of the system. An analogy,
used solely to reinforce the distinction between grades and classes, is
that all United States college students, theoretically, pass through the
consecutive grades, freshman, sophomore, junior, senior. While so
doing, and even later, they are identified as, say, Class of ’56 or
Class of ’02. As with the Gada system, although the grades are some-
what related to age, not everyone in each grade is the same age. Also
similar is that not everyone in the same class enters the college at the
same time or in the same grade, and not all class members participate in
all class activities. The analogy, of course, is quite limited. The systems
differ considerably in their extent and in their cultural significance, as
well as in what characterizes the grades and how they are related, the
ceremonials that take place as a class passes from grade to grade, how
classes are determined, their relation to each other, and how they are
named.
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Map 5.1 Africa. (The shaded region is inhabited by the Borana.)
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We begin with a sketch of the temporally ordered Gada grades that
correspond to idealized stages in the passage through life.
Those in Dabelle, a preliminary grade, are given special care, are not

to be physically punished, and are to spend their time in playing and
dancing. They remain near the huts, the province of women. Their
mothers are treated with honor by the community and are allowed
special privileges. Among the mothers’ privileges are that they need
not wait on the lines at the wells, and they may wear twice as many
copper hairpieces. Although the Dabelle group consists only of boys, of
particular importance is that their hair is left uncut and decorated with
cowries, and they are addressed and referred to as girls. While in this
grade, boys can have no sisters. Hence, any girls born to the boys’
mothers’ must be abandoned or given away for adoption.
Upon entrance into the Junior Gamme grade (which we will call

Grade 1), their birth as sons is considered to take place. Their hair is
cut, and each child is given a new name. Also, those in the grade are
given a class name that will remain with them throughout their lives.
(We will return to class naming later because not only are the relations
involved within it a crucial part of the system, but the combination of
naming and grades links the finite linear life process of individuals to
continuous cycles in the life of the culture.) The length of time the class
spends in Grade 1 is 8 years. During this time, grade members stay
around the cattle enclosures, the province of men, and may help herd
small livestock. Now, it is permissible for sisters to be born. Toward the
end of the 8-year period, the grade members, under careful supervision,
may begin to participate in cattle raids, hunts, and war parties.
The next grade, Senior Gamme (Grade 2), also lasts for 8 years.

During that time, the grade members visit each other, participate in
rowdy behavior, harass those in the grade below them, and begin to act
as warriors. Toward the end of the grade, a most important selection
takes place; leaders of the group are chosen. There are six councillors,
six deputy councillors, and several ritual positions. The selection is of
major consequence because, at the transition to Cusa (Grade 3), the
leadership roles become formalized and will continue beyond the
grade.
Upon entering Grade 3, the chosen leaders change their dwelling

places to live in close proximity to each other, and where the leaders
live becomes the capitol of the class. No decision or ritual relating to
the class will take place without the leaders. From the six councillors, a
top councillor is chosen, and the class becomes identified with his
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name. During the 8 years of Grade 3, those in the grade assist their
fathers in pastoral chores, begin to take a role in rituals and perform
appropriate sacrifices, engage in big game hunts, and, although under
supervision of those in the grade above, are predominant in warfare and
cattle raids. Their outfits become those of adults, and much time is
devoted to finding mistresses and looking for wives. Marriage,
however, cannot take place before the beginning of Grade 4 (Raba).
At the beginning of Grade 4, the class is married. In this ceremony,

as in all others, the leaders must participate. All others in the class
participate if they can and if they wish to—they may defer their
marriages to a later time. (As with numerous rituals and ceremonies,
the leaders represent the class; what they have done, the class is consid-
ered to have done.) During the 8 years of Grade 4, the members of the
grade, married or not, are not permitted to have children. This is strictly
enforced. Those in the grade serve as senior warriors and, in general,
engage in wild and aggressive behavior.
In Grade 5 (Dori or Senior Raba), the group’s attention turns to

family life and to learning about governance and matters in the public
sphere. It is now legitimate and appropriate to have sons. Daughters,
however, are forbidden and are abandoned or given away for adoption.
It is important to note that participation in prescribed rituals and cere-
monies, which had its beginnings in Grade 3, continues to be of impor-
tance throughout the grades.
Grade 5 lasts only for 5 years, with the next 3 years an initial part of

Grade 6 which lasts, in all, for 11 years. Together, then, Grades 5 and
Grades 6 last for 16 years with Grade 6 being the Gada grade during
which those in the grade bear major responsibility for the entire
community. During the initial 3 years of grade 6, the members parti-
cipate in a big-game hunt and in numerous ceremonies. There is a
gradual handover of responsibilities to them from those who have
just passed out of the grade into the next.
At the end of this 3-year period, there is a formal ceremony marking

the end of the transition and the beginning of new leadership. The
ceremony requires that the incoming and outgoing classes camp next
to each other for several weeks. At a prescribed time, everyone, except
for the two class leaders, must remain indoors while the two leaders
exchange milk and blessings, and the scepter of authority is formally
handed over. The sacrifice of a bull marks the conclusion of the transi-
tion. Soon after the takeover, all member of the incoming group
undergo circumcision and earpiercing, and then must remain indoors
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for about a month, eat special foods, make special offerings, and parti-
cipate in a ceremony marked by the release of snakes. It is during this
time that their sons formally enter Grade 1. Thus, all sons are consid-
ered to be born when the fathers are 40 years old. But ‘‘40 years old’’ is
not the father’s biological age; it is the father’s age as measured from
his formal birth into the Gada system.
The primary role of those now in power is to maintain ‘‘The Peace of

Boran’’, which deals with the relationship between the nation and God,
as well as to resolve any disputes that may arise between descent
groups, clans, classes, or camps. The conflicts may be of any type—
ritual, political, moral, legal, or economic. The leaders also must see to
the planning and execution of communal projects, such as the excava-
tion of a new well. In all, it is a heavy burden and one that is willingly
passed on at the end of the 8 years. These 8 years in the Gada grade are
of such significance that the historical period will be identified by the
name of the class in the grade and the name of its top councillor. (The
significance of the grade is underscored by the fact that both the overall
system and the grade are referred to by the word Gada.)
Grades 7, 8, and 9 are, together, the Yuba grades lasting in all for 24

years. Those in these grades are considered wise and responsible advi-
sors, as well as ritual experts. Grade 10 (Gadamoji), also lasting 8
years, is one in which the members do no herding, engage in no public
affairs, use no weapons, control their tempers, and moderate all their
behaviors. Then comes Jarsa (Grade 11), a sacred state that lasts inde-
finitely.
In all, there are ten grades lasting 80 years and a preliminary grade

and a final grade that are variable in length and, in effect, outside of the
system. A man’s passage into Jarsa comes at the same time as his sons’
assumption of power and his grandsons’ official birth into the system.
As we can see from looking at Figure 5.3, the conceptual model super-
imposes symmetry and clarity of form on the stages of life. By having a
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Figure 5.3 Gada grades.
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specific beginning and end, and clear demarcation points, the grades are
well defined and ordered in time.
It should be evident when reading the description of the grades that

not all life passages of every individual can take place in conformity
to the ideal. Relationships between men and women other than
spouses are not uncommon or unacceptable. They simply exist along-
side the formal model. Children do get born from these relationships
and at times that are considered improper. Most marriages are not at
the designated time for the class. Not only may some of the men in the
class be too young, but since all brothers are in the same class, their
fathers may have insufficient means to provide the required bride
wealth for all of them simultaneously. And, since polygyny is
accepted, with men often having senior and junior wives, sons may
actually be born well after their class has passed through several
grades. As a result, men may miss participating in the ceremonies,
rituals, activities, and responsibilities that go with those grades.
However, since it is not biological age but class that determines
one’s role, young boys and older men may share on an equal footing
in discussions, decision making, and responsibilities. No matter what
the biological reality, the crucial assumption of the system is
unchanged—all sons are born and enter a named class 40 years
after the birth of their fathers.
With this outline of the grades in hand, we now turn to the class

names used by the Borana historians, how they are assigned, and how
they are conceptualized. The interrelationships of the names link the
past to the present and the present to the future.
As was already noted, at the time that those in Grade 6 assume

power, their sons are born into the system and given a class name.
The name is one of only seven class names. The class names occur
in a fixed order and recur in a cycle. For ease of identification, we
will call them (c1, c2, c3, c4, c5, c6, c7). The subscripts reflect the fixed
order, and the parentheses are a conventional mathematical way of
indicating that the enclosed items cycle. Hence, which name is writ-
ten first in the parentheses is arbitrary—(c4, c5, c6, c7, c1, c2, c3), for
example, represents the same cycle of seven names, as does (c6, c7,
c1, c2, c3, c4, c5). A diagram of the cycle is in Figure 5.4. The class
name given to a son is always five names behind the class name of
his father. Thus, if a father is in class ci, (i ¼ 1,2, …, 7), his son is in
ci25, where, because of the seven-name cycle, the subscript arith-
metic is mod 7. For example, if a father is in c7, his son is in c2,
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and a father in c3 has a son in c325(mod 7) ¼ c5. The relation between
fathers and sons can be encapsulated by:

SðciÞ¼ci25 ðmod 7Þ for i¼ 1; 2; …; 7 ð4Þ
where S(ci) is the son of ci. Similarly, a man in ci can be related to
his grandson (the son of the son of ci) by

SðSðciÞÞ¼Sðci25Þ ¼ ci210 ðmod 7Þ

or, in general, using an exponent to indicate the number of genera-
tions that pass, that is, the number of times S, ‘‘the son of,’’ is
applied:

SnðciÞ ¼ ci25n ðmod 7Þ for n ¼ 1; 2;…; i ¼ 1; 2; …7: ð5Þ
With the foregoing relationship and a bit of modular algebra, it can

be determined when, and if, some descendant of a man in ci returns to
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Figure 5.4 The class name cycle. ( ! leads to the name that follows.)
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ci. There will be a return to ci if

ci¼ci25n ðmod 7Þ;

which occurs for any solutions of

i ¼ i2 5nðmod 7Þ:
That is, it occurs after n generations for all n satisfying

5n ¼ 0ðmod 7Þ: ð6Þ
In modular algebra, cancellation must be approached with caution.

If, say, 2 ¼ 6(mod 4), by cancelling a factor of 2 on both sides, one
might erroneously conclude that 1 ¼ 3(mod 4). Or, by simply cancell-
ing a 3 on both sides of 3n ¼ 9(mod 6), the solutions n ¼ 1(mod 6)
and n ¼ 5(mod 6) could be missed. Cancellation of k, however, causes
no difficulty in ka ¼ kb(mod m) where k and m are relatively prime,
that is, where they have no common factor. Also, for k and m rela-
tively prime, solving kn ¼ kb(mod m) for n by cancellation is possi-
ble; it yields an integral solution such that any other solutions are
equal to it mod m.
In the case being considered here [seeking the solution to (6)], 5 and

7 are, indeed, relatively prime. Hence, it can be concluded that the
solution is n ¼ 0(mod 7); that is, n ¼ 7 or any multiple of 7. Therefore,
starting with any ci, the father-to-son descent line does return to ci after
seven generations, and every seventh generation thereafter. It, too, is a
cycle of length seven containing all seven class names. The order in
which the names follow each other in this cycle, however, differs from
the class name cycle: it is (c3, c5, c7, c2, c4, c6, c1). (See Figure 5.5.)
In mathematical terminology, the father-to-son descent cycle is a

permutation of the class name cycle. A permutation, in general, is a
one-to-one transformation of a finite set of elements onto itself. We
could, for example, transform the name cycle into the father-to-son
descent cycle by replacing each ci by c2i11(mod 7). There are other
ways (which the reader might wish to explore), but what is important
is that both cycles are of length 7, and, in each, each of the seven names
appears once and only once (compare Figures 5.4 and 5.5).
Rather than focusing on the fact that the class name of the sons is five

names behind that of the father, we can, instead, focus on the fathers
and say that the class name of the father is five names ahead of his sons.
That is,
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FðciÞ ¼ ci¼i15ðmod 7Þ for i ¼ 1; 2; …; 7 ð7Þ
where F(ci) is the father of ci. In the Borana system, because class
names rather than individual names are involved, and all sons have
the same class name, ‘‘the son of’’ and ‘‘the father of’’ are inverse
relations. This means that beginning with some ci and consecutively
applying the relations S(ci) defined in (4) and F(ci) defined in (7) always
returns to the original ci:

F½SðciÞ% ¼ F½ci 2 5% ¼ ci and S½FðciÞ% ¼ Sðci 1 5Þ ¼ ci:

In other words, the class name of the father of the son of a man in ci is ci,
and the class name of the son of the father of a man in ci is ci. In general,
for individual names, the father and son relations are not inverses. Let
us see why with individual names the situation differs. Say, for exam-
ple, that the father’s name is Jacob, his father’s name is Isaac, and his

CHAPTER 5

150

Figure 5.5 The father-to-son name cycle. ( ! leads from the father to the son.)

. 9 7 9?7 7I 7I?9 1A .C 1MEAD 7I?DC D 2: 7 .9 D / AI ?C9 IDC 6C? ?I D5 I
18DD / CI 7A IIE 8DD 9 CI 7A E D I 9D A?8 C A?8 7  8DD : I7?A 79I?DC-:D920,

/ 7I : D C A?8 7  8DD DC   

/
DE

?=
I

?C
9

ID
C

6
C?

?I
.

AA
?=

I
:



son’s name is Joseph. Then, provided that Isaac has only the one son,
Jacob:

F½SðJacobÞ% ¼FðJosephÞ ¼ Jacob; and S½FðJacobÞ% ¼SðIsaacÞ ¼ Jacob:

However, if Isaac has two sons, say Jacob and Esau, then there is
ambiguity:

F½SðJacobÞ% ¼FðJosephÞ ¼ Jacob; but S½FðJacobÞ%
¼ SðIsaacÞ ¼ Jacob or Esau:

In the Borana system, all of a father’s sons have the same class name,
and so this problem does not arise.
Were the focus on F(ci) rather than on its inverse S(ci), the same

cycle of names would result, but it would move in the opposite direc-
tion: (c5, c3, c1, c6, c4, c2, c7). In Figure 5.5, the arrows move in the
positive direction of time, that is, from fathers to sons, moving against
the arrows—back in time—would lead from the sons to the fathers.
From either perspective, although each individual is in only one class
throughout his life, he is linked to all classes through his ancestors and
descendants.
At any specific time, because each group retains its class name as it

moves through the grades, consecutive class names are held by conse-
cutive grades. There are, however, more grades than class names, and
so all names are present, but some will be present more than once. Let
us look, for example, at a time point when c7 is the name of the class
holding power in Grade 6. The names of the classes in the respective
grades would be as shown in Figure 5.6.
The class name of the fathers of c7 is c5, but clearly, the fathers are

not those named c5 at this time. The present c5 are in a lower grade
(Grade 4). And, c2 appears twice, but we know that the c2 sons of c7 are
those in Grade 1, not those in Grade 8. There are, then, two distinct
sequences present: the c2, c3, c4, c5, c6 in grades 1–5 and their respective
fathers c7, c1, c2, c3, c4 in grades 6–10. In general, at any given time,
there are two related five-name sequences present. The five-name
sequences play a significant role in the Borana conceptualization of
the grade system as the culture moves through time.
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Figure 5.6 Classes in grades at a specific time.
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In Figure 5.7, using the same time point as is represented in Figure
5.6, beginning with the Grade 1 class c2, we write the consecutive class
names in a row, but move to a new row after each set of five names.
(The consecutive-class names, as we know, are in a seven-name cycle.)
The first seven rows are all different, but the eighth row duplicates the
first. We stop writing after the eighth row, but could continue indefi-
nitely. (Recall that in Chapter 3, Section 1, there is a discussion of the
length of a supracycle resulting from combining cycles of different
lengths.) Notice that as the rows are formed, we are moving back
through time. The second row contains the class names of the fathers
of the first row, the third row contains the fathers of the second row, and
so on. Looking down each of the five columns, we see the names in the
order of the son-to-father cycle, beginning with the names of the classes
in grades 1–5, respectively. The way that this is written on Figure 5.7 is
ours, but the interplay of groupings of five with cycles of seven forming
a supracycle of 35 belongs to the Borana.
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Figure 5.7 Consecutive class names in groupings of five.

c2 c3 c4 c5 c6

c7 c1 c2 c3 c4

c5 c6 c7 c1 c2

c3 c4 c5 c6 c7

c1 c2 c3 c4 c5

c6 c7 c1 c2 c3

c4 c5 c6 c7 c1

c2 c3 c4 c5 c6

· · · · ·

· · · · ·

· · · · ·
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Eachof these five son-to-father lines is called agogessa by theBorana.
Usually, men can state the class names of their fathers to a few genera-
tions. Borana historians, however, using this conceptual framework, can
locate events in the past as distant as fifty or more 8-year periods. They
associate an event with the class name and leader name of those in the
Gada grade at the time of the event. This is of special importance because
it is believed that events of specific earlier time periods have profound
implications for current times. Just as the same configuration of names in
our 7 £ 5 array reappears after 35 periods have passed, so do the influ-
ences of the events and outcomes of that earlier time. The history of 280
years ago is not just an interesting story: it is crucial cultural knowledge.
Dacci is the Borana word for the influence of history on current happen-
ings. That influence is transmitted through father-to-son lines, but oper-
ates, in particular, in a cycle of 35 periods.
Thus, for example, a Borana historian tells that the time period

identified with class c6 led by Morowwa Abbayye ‘‘returns upon’’
Jaldessa Liban (the leader of class c6 in the Gada grade 35 periods
later). He continues:

Morowwa’s gada was a time of peace and plenty. Morowwa dug a well called El
Morowwa. All Borana drank from that well. After Morowwa died, the well
disappeared, and the Galantu have been short of water ever since. It is this
[gada] of plenty that returned upon Jaldessa Liban. As you can see today,
both man and cattle are fertile and water is plentiful. Jaldessa Liban has found
the well of his ancestor and Borana has, once again, begun to drink to satiation.
The gada of Morowwa is very good, and we do not expect anything to go wrong
in the present gada.

The relations that are reflected in Figures 5.4, 5.5, and 5.7, as stated
by the same Borana historian (and translated into English by an African
social scientist), are presented below. (Included in brackets are some of
the statements recast into the terminology and symbolism that we have
been using.)

The makabasa are seven: moggisa, sabbaka, libasa, darara, mardida, fullasa,
makula. The present gada is fullasa, before that was makula, before that was
moggisa, before that sabbaka, libasa, darara, and mardida. [The class names are
seven: c1, c2, c3, c4, c5, c6, c7. Presently in Grade 6 is c6, before that was c7, before
that c1, before that c2, c3, c4, c5.]
1. The makabasa pass from father to son. Mardida is born to libasa, libasa is born
to moggisa, moggisa is born to fullasa, fullasa is born to darara, darara is born to
sabbaka, sabbaka is born to makula, makula is born to mardida. [The class names
pass from father to son. c5 ¼ S(c3), c3 ¼ S(c1), c1 ¼ S(c6), c6 ¼ S(c4), c4 ¼ S(c2),
c2 ¼ S(c7), c7 ¼ S(c5).]

SYSTEMS OF RELATIONSHIPS

153

. 9 7 9?7 7I 7I?9 1A .C 1MEAD 7I?DC D 2: 7 .9 D / AI ?C9 IDC 6C? ?I D5 I
18DD / CI 7A IIE 8DD 9 CI 7A E D I 9D A?8 C A?8 7  8DD : I7?A 79I?DC-:D920,

/ 7I : D C A?8 7  8DD DC   

/
DE

?=
I

?C
9

ID
C

6
C?

?I
.

AA
?=

I
:



2. The Makabasa return to the same gogessa after seven fathers. [The same class
name returns to the same son-to-father line after seven fathers.]
3. Before it returns to the gogessa, the makabasa goes to the other four gogessa.
[There are five son-to-father lines. A name goes to the other four lines before
returning to its original position.]
4. The makabasa never goes to the gogessa of your walanna, and it never comes
from the gogessa of your walanna.
5. When the makabasa returns, dacci also returns. It returns from gogessa
walanna and gogessa kadaddu.
This is how the makabasa give birth to each other.

The words that are new are walanna and kadaddu. According to the
Borana, there is competition and rivalry between adjacent classes,
whereas alternate classes are allies or friends. The same characteriza-
tion applies to adjacent and alternate generations and alternate gogessa.
Walannameans rivals and kadaddumeans allies. Rule 4, then, says that
consecutive appearances of a class name are always in alternate—
rather than adjacent—son-to-father lines.
In order to assure ourselves that this alternation is always true, we

observe that for thirty-five consecutive class names arranged in a
seven-row by five-column array (beginning with n1 in row 1, column
1 and calling them nj where j ¼ 1, 2, …35), the column in which a
name appears is j(mod 5). The use of mod 5 results from moving back
to column 1 at the end of each row of 5. Since the class-name cycle is
of length seven, the next appearance of name nj is nj17. The column in
which it appears is (j 1 7)(mod 5), which equals j(mod 5) 1 7(mod
5), or j(mod 5) 1 2. That is, it is two columns beyond j(mod 5).
Similarly, the previous appearance of nj is two columns before
j(mod 5). Look, for example, at c7 in Figure 5.7. It first occurs as
the sixth name (n6), and so is in column 6(mod 5), that is in column 1.
Its next appearance is as n13, and so it is in column 13(mod 5), that is,
column 3, and then in column 5, column 2, column 4, and then again
in column 1. We not only see that any particular name does, indeed,
go to and come from alternate columns, but also see that it returns to
its original column after seven fathers (rows). And, as is stated in rule
5, when the name returns after a complete 35-period cycle, it brings
with it the influence of that earlier time. It secondarily brings the
influences of the times of the earlier appearances of the name during
the cycle; those appearances were in both adjacent and alternate
columns.
The Gada system clearly serves to integrate Borana culture. Its

structure ties together the realms of the social, the political, the
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economic, and the philosophical. Our interest in it, however, is as a
system of well-defined relations and relations between relations. The
temporally ordered grades, the cyclic class names, and, even more
so, the stipulation that each son is exactly 40 years behind his father
in the system underlie the relations. The 40-year spread unites the
grades and class names: 40 years spans five grades and places the
sons five class names behind their fathers. There are seven class
names, and they cycle (see Figure 5.4). Combining the seven-name
cycle with a five-name displacement yields the son/father seven-
generation name cycle (see Figure 5.5). Also, because sons are
five class names behind their fathers, there are five distinct son/father
lines present at any given time. Since the son/father cycle is of
length seven, and the names within it are five consecutive names
apart, the cycle spans 35 consecutive names. Thus, there is the thirty-
five-name cycle of Figure 5.7. The fact that the numbers five and
seven are relatively prime is particularly significant to the conforma-
tion of the system.

7 Systems of social organization, like mathematical systems, are
human creations. Although there is no culture without some

form of social organization, the systems vary considerably in their
scope, their formality, and, above all, their configurations. Just the
few we discussed should give some sense of how conceptually diverse
they are, and that they are, indeed, arbitrary complexes of relations and
relations between relations.
For the Basque, the concept of circle integrates the system of coop-

eration. The circle is a shared abstraction; each households knows
which neighbor is their first neighbor and which is their second neigh-
bor. The participation of a shepherding group’s members and their roles
are determined by a cycle. And going up and down the mountain is
conceived of as a rotation. For the Tongans, however, hierarchical
ranking dominates. And, for the Borana, there is division into classes
and passage through consecutive grades, plus the arbitrary assumption
that sons are born 40 years after their fathers. Within the systems, the
various relations are built upon the unifying conceptions, reinforcing
and operationalizing them.
Each of the systems also has, as mathematical systems must, clearly

defined elements. Among the Basque, the members of a shepherding
group, for example, are fixed through time. That is, each group has a
specified set of members. As for neighbors in the circle, that identity
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remains with a house, regardless of who is occupying it at any given
time. Also, as was noted, in the Gada system, grade and class member-
ship is quite well defined, and, where there may be individual differ-
ences, the elected leaders stand for the group.
Among mathematicians and those who contemplate mathematics,

the question is sometimes raised as to whether mathematics is discov-
ered or invented. My own view is that both occur: mathematical
systems are created (a more appropriate term than invented), but
then, resulting from the relations within them, further relations are
discovered to exist. Social systems are surely the creations of the
people within whose culture they are found. But, no doubt, as time
goes on, additional logical implications of the relations become appar-
ent. Among the Basque, the complete role reversal during the first
phase of the shepherding (that is, whoever is R6 when Hi is R1, is R1

when Hi is R6), may, for example, have been found to result from the
other relations. For the Tongans, the problem inherent in the system for
the king was probably unintentional. And, in the Gada system, conse-
cutive appearances of a particular class name in alternate son-to-father
lines might be an example of a discovered property rather than one that
is part of the primary conception of the system. These, of course, are
only surmises. But, in any system, no matter how well described, there
are always ramifications of the relations within it that are yet to be
explored and yet to be discovered.

Notes

1. Useful discussions of mathematical relations are found in the college texts Founda-
tions and Fundamental Concepts of Mathematics, H. Eves, 3rd edition, PWS-Kent,
Boston, MA, 1990, pp. 132–136; The Anatomy of Mathematics, R.B. Kershner and
L.R. Wilcox, 2nd edition, Ronald Press, New York, 1974, pp. 50–60; and Rethink-
ing Mathematical Concepts, R.F. Wheeler, Ellis Horwood, Chichester, UK, 1981,
pp. 11–23. The last is directed toward prospective teachers. A more general and
scholarly book is C.E. Rickart’s Structuralism and Structures: A Mathematical
Perspective, World Scientific, London, 1995. In a section entitled ‘‘The Basic
Definitions’’ (pp. 17–20), he discusses relations as the essential ingredients of
structures. His definition of a structure (p. 17) is ‘‘any set of objects (also called
elements) along with certain relations among those objects.’’ As he also notes, ‘‘the
definition is considerably more subtle than its simple form might indicate.’’ As for a
system, it (p. 19) ‘‘is a collection of interrelated objects along with all of the
potential structures that might be identified within it’’; that is, it ‘‘may be perceived
in more than one way as having structure, depending on which properties are
singled out for attention.’’ These definitions and observations are very important
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to the understanding of our definition of mathematical ideas, which includes those
ideas involving number, logic, spatial configuration, and more significant, their
combination or organization into systems and structures. And, when we, as math-
ematicians, see some similarity in social systems, we are singling out for attention
only very limited aspects of those systems.

2. Discussions of equality and the equivalence relation are on pp. 34–36, 284–287 in
the Kershner and Wilcox text noted in the Section 1 notes above. In the Eves and
Wheeler texts, they are included in the sections already cited.

Sociopolitical discussions of equality that were influential in Euro-American
culture are, for example, Nicomachean Ethics, Book V, Aristotle, fourth century
BCE; Jean Jacques Rousseau’s ‘‘A Discourse on the Origin of Inequality’’ (1754)
and ‘‘The Social Contract’’ (1762); and John Stuart Mill’s ‘‘On Liberty’’ (1859). The
phrases quoted as common American-English usage appear under the synonyms for
same on p. 1289 of Webster’s New World Dictionary of the American Language,
College Edition, World Publishing Co., New York, 1966.

3. My discussion here of the Basque and their ideas is drawn from my article ‘‘What
does equality mean?—The Basque view,’’ Humanistic Mathematics Network Jour-
nal #18, Nov. 1998, pp. 22–27. Both the article and this discussion are derived from
my reading of A Circle of Mountains: A Basque Shepherding Community, Sandra
Ott, Clarendon Press, Oxford, 1981. Of particular relevance are pp. vii–viii, 1–41,
63–81, 103–106, 129–170, and 213–217. The few phrases directly quoted are from
p. vii. Other mathematical ideas of the Basque are being studied extensively by
Rosyln M. Frank, University of Iowa. See, for example, ‘‘The Geometry of Pastoral
Stone Octagons: The Basque Sarobe,’’ Rosyln M. Frank and J.D. Patrick, pp. 77–91
in Archeoastronomy in the 1990s, Clive L.N. Ruggles, ed., Loughborough Group D
Publications, London, 1993, or ‘‘An essay on European ethnomathematics: The
coordinates of the septuagesimal cognitive framework in the Atlantic facade,’’
Rosyln M. Frank, 78 pp., ms., 1995. Also, a special counting technique among
the Basque living in California is described in ‘‘Counting sheep in Basque,’’
Frank P. Arawjo, Anthropological Linguistics, 17 (1975) 139–145.

4. A discussion of order relations can be found in chapter 15 of The Anatomy of
Mathematics cited in the Section 1 notes above, as well as in most abstract algebra
texts.

5. For additional understanding of the Tonga ranking system and its manifestation in
the culture, the writings of Adrienne L. Kaeppler are recommended: ‘‘Rank in
Tonga,’’ Ethnology, 10 (1971) 174–193; ‘‘Exchange patterns in goods and spouses:
Fiji, Tonga and Samoa,’’ Mankind,11 (1978) 246–252; and ‘‘Me’a faka’eiki:
Tongan funerals in a changing society,’’ pp. 174–202 in The Changing Pacific,
Niel Gunson, ed., Oxford University Press, Oxford, 1978. Also see Garth Rogers’
‘‘‘The father’s sister is black’: A consideration of female rank and power in Tonga,’’
Journal of the Polynesian Society, 86 (1977) 157–182.

In chapter 2 of Structural Models in Anthropology, Per Hage and Frank Harary,
Cambridge University Press, Cambridge, 1983, after introducing terminology and
concepts from graph theory, the Tonga kin subsystem is used as an example of a
transitive tournament and acyclic digraph (pp. 80–83). The book is intended to
enable social scientists to use graph theoretic ideas. For teachers and students of
graph theory, it can broaden their view of the subject’s applicability. In their 1991
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book, Exchange in Oceania, Clarendon Press, Oxford, the same authors discuss the
Tonga example in more detail as part of their discussion of the logic of relations (pp.
263–268). The authors are an anthropologist and a mathematician, respectively.
Their writings are recommended.

6. My discussion of the Gada system of the Borana is primarily based on Gada:
Three Approaches to the Study of African Society, Asmarom Legesse, The Free
Press, New York, 1973; Authority and Change: A Study of the Kallu Institution
Among the Macha Galla of Ethiopia, Karl E. Knutsson, Ethnologiska Studier, vol.
29, Ethnografiska Museet, Göteborg, Sweden, 1967, pp. 160–169; and ‘‘Boran
age-sets and generation sets: Gada, a puzzle or a maze?’’ P.T.W. Baxter, pp.
151–182 in Age, Generation and Time: Some Features of East African Age Orga-
nizations, P.T.W. Baxter and Uri Almagor, eds., St. Martin’s Press, New York,
1978. Although they are about the Gada system as used by a neighboring Oromo
group, two additional useful references are Guji Oromo Culture in Southern
Ethiopia, Joseph Van de Loo, Dietrich Reimer Verlag, Berlin, 1991, and ‘‘The
Guji: Gada as a ritual system,’’ John Hinnant, pp. 207–243 in the book edited by
Baxter and Almagor cited above.
The book by Legesse is of particular interest because it is an extensive descrip-

tion and analysis and is written by an African social scientist trained in anthro-
pology. He includes a chapter entitled ‘‘An essay in protest anthropology’’ in
which he critiques the ethnocentrism found in the foundations of anthropology
and in anthropological writings. He believes, however, that, with care, many of the
tools and insights that were developed can be used to further the understanding of
the African heritage. (Included in Legesse’s book is a discussion of the Borana
calendar. I did not find this part of his discussion clear or convincing. A critique of
his discussion is ‘‘The Borana calendar: Some observations,’’ C.L.N. Ruggles,
Archeoastronomy, 17 (1987) S35–S54.) The statements from the Borana historian,
Arero Rammata, quoted here were obtained and translated by Legesse. They
appear on pp. 198–199 and p. 192, respectively, in his book and are quoted
with his permission. (He notes that the specific class names used by the expert
historians differ from those used by others. Also, the bracketed word in the first
quotation is my substitution for the word fullasa, which is not introduced here
until later.)
Modular algebra, more formally known as the algebra of congruences, is also

discussed in Chapter 3, Section 3. As included in the notes for that section, for basic
discussions, see Invitation to Number Theory, Oystein Ore, New Mathematical
Library, MAA reprint of 1967 original, and Elements of Number Theory, I.A.
Barnett, Prindle, Weber, & Schmidt, Boston, MA, 1969. For a more extended
introduction to permutations, cycles, and congruences, Introduction to Mathema-
tical Structures and Proofs, Larry J. Gerstein, Springer, Sudbury, MA, 1996, pp.
211–243, 281–321 is especially recommended.
The father-to-son cycle also has the properties of a cyclic group of order 7.

Moreover, in group theoretical terminology, it is an Abelian group and, because 7
is prime, it is a simple Abelian group. For an introduction to groups, see Groups
and Their Graphs, Israel Grossman and Wilhelm Magnus, New Mathematical
Library, 1964, reprinted by Mathematical Association of America, Washington,
DC. Also, in Ethnomathematics: A Multicultural View of Mathematical Ideas,
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Marcia Ascher, Chapman & Hall/CRC, New York, 1994, the concept of a group is
presented in detail, and the Walpiri kin system is shown to be a group. In contrast
to the simple Abelian cyclic group of order 7 noted here, the Walpiri system is a
dihedral group of order 8. (The Genesis of the Abstract Group Concept, Hans
Wussing, MIT Press, Cambridge, MA, 1984, about the history of the group
concept within Western mathematics, is highly recommended. It helps us to under-
stand that our view of what constitutes mathematics changes through time, and, in
particular, how the emphasis on structure evolved.)
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CHA P T E R 6

Figures on the Threshold

Each morning, women in Tamil Nadu, in southern India, place designs
on the thresholds of their homes. The designs, known as kolam, are
created by using rice flour held in the hand and slowly trickled in a thin
stream from between the index and middle finger. More than simply a
folk art, the kolam tradition is closely tied to, and expressive of, the
values, rituals, and philosophy of the people of Tamil Nadu.
One of the first written references to kolam is in the sixteenth

century, although the origin of the tradition may be far earlier:

Once there was a king, Vallālmakārājan, who ruled in Arun
˙
ai… He was an

excellent king, truthful, benevolent, always praising Śiva’s feet; he cared for
all lives as if they were his own; he had no desire for others’ wealth, and he
regarded all women other than his wives as if they were his sisters. With such a
fine king, it is no wonder that the kingdom flourished: the tiger and the cow
drank from the same watering place, Brahmins chanted the Veda, women deco-
rated the streets with kolams, rain fell on schedule, and the hungry were fed.

Even if not always adhering to all the details of the traditional practice,
the creation of threshold decorations continues today with the kolam
designs well known to those who live in cities, as well as those who live
in rural areas, and to college students and professionals, as well as those
who have had less schooling.
The kolam tradition is mathematically interesting for several

reasons. The complex and intricate figures are intriguing in and of
themselves, but, what is more, in many cases, their creation involves
the transformation and superimposition of basic subunits, and there are
families of kolam whose members can be derived from each other in
patterned ways. Replicating the richness of these figures and their
growth patterns became a challenge to computer scientists who were
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creating picture languages and were studying formal language theory.
In addition to their importance to the people of Tamil Nadu, the crea-
tion of kolam designs have become part of the computer science litera-
ture, serving as examples for some types of languages and as the
inspiration for additional types of languages. Thus, the kolam provide
an exemplar of the way that mathematical ideas in a traditional setting
can reach beyond their own cultural boundaries to enrich and contribute
to scholarly interests. At the same time, of course, the attention from
this new perspective has deepened and enriched our understanding of
the kolam. Here, we focus on both the kolam tradition and on its
linkage to picture languages.

1 There are several traditional art forms spread throughout India that
are similar to kolam. There are, for example, the closely related

rangoli or rangavalli in the Deccan region just north of Tamil Nadu,
aniyal in Kerala to its west, and alpana in Bengal. They share some
characteristics: they are practiced by women and originally utilized rice
and rice flour. There are, however, some differences in traditional
configurations, methods of construction, and specific cultural mean-
ings. Although they are probably historically related, we confine
ourselves to the kolam tradition of the people of Tamil Nadu in the
southeastern region of India. Prior to India’s independence from the
British in 1956, this region was part of what was called the Madras
Presidency. The region then became the state of Madras until 1969,
when its name was changed to Tamil Nadu.
For mathematicians familiar with the work and story of Srinivasa

Ramanujan (1887–1920), the region has additional significance
because it is where he was born, raised, educated, and died. With the
exception of his stay in Cambridge from 1914 to 1919, Ramanujan
lived surrounded by, and immersed in, Tamil Nadu culture. He is
known to have quoted proverbs and allegories from folk tales of
Tamil Nadu while discussing mathematical problems.
The official language of the state is Tamil, and, as contrasted to

other cultures we have discussed, there is a written script and an
extensive Tamil literature. Although the writings go back to the
third or fourth century BCE, the earliest references to kolam that
have been found in Tamil literature occur much later. These, however,
are only passing references and do not describe kolam in detail.
Kolam, itself, is part of the people’s oral tradition, which exists side
by side with its textual tradition.
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The figures are referred to as kolam, but in Tamil, the word is not
limited to them but is broader in meaning and usage. The meanings
include beauty, gracefulness, form, shape, and appropriate dress, and
are linked to the concept of order, which is viewed as a significant
aspect of beauty. A house without kolam is called mūli, that is, a
woman without nose-rings, ear-rings, and, if married, without the red
dot on her forehead.
The women and girls of a traditional Tamil Nadu household begin

their day by sweeping the floor and the area in front of the house,
sprinkling the threshold area with a solution made with cow dung,
and then decorating the threshold area with kolam. The women are
familiar with numerous designs—some for daily use, some for special
occasions, and some for particular rituals and holidays. Girls are taught
the designs and techniques by their mothers. It is an important part of a
girl’s training, as kolam skills are considered a mark of grace and a
demonstration of dexterity, mental discipline, inner harmony, and an
ability to concentrate. The elaborate threshold decorations, which are
built with the basic designs and techniques, are aesthetic and creative
expressions of the women who ‘‘place’’ them. Although deemed less
traditional and less creative, today some additional sources of designs
are used, namely commercial magazines and even stencils.
The materials used to create the designs have significance. Cow

dung, because of its germicidal properties, is to cleanse and disinfect
the floors. The use of rice powder at the threshold shows kindness to
inferior insects because it is food for ants. At the same time, it keeps the
ants from entering the house. (Most recently, powdered limestone or
some other coarse white powder, lacking in significance, is used.)
The decorations at the threshold serve both to welcome guests on

auspicious occasions and, on other occasions, as a protective screen,
averting misfortunes and illness and keeping evil spirits from the house.
Philosophically, the threshold is a boundary, but a permeable one,
symbolic of the boundary between the inner world of the mind and
emotion and the outer world of the landscape and action, or as the place
of passage from the sacred to the mundane. It is also identified with
transition points in the cosmic cycle, related both to the lives of indi-
viduals and to the seasonal round. Thus, beyond their aesthetic value,
the decorations on the threshold are chosen to appropriately mark life-
passage events, rituals, or as the prelude to worship of particular deities.
There are no kolam in front of a house at the time of a severe illness or
death of a family member.

FIGURES ON THE THRESHOLD

163

Ascher, M. (2002). Mathematics elsewhere : An exploration of ideas across cultures. ProQuest Ebook Central <a
         onclick=window.open('http://ebookcentral.proquest.com','_blank') href='http://ebookcentral.proquest.com' target='_blank' style='cursor: pointer;'>http://ebookcentral.proquest.com</a>
Created from nyulibrary-ebooks on 2020-09-29 16:38:57.

C
op

yr
ig

ht
 ©

 2
00

2.
 P

rin
ce

to
n 

U
ni

ve
rs

ity
 P

re
ss

. A
ll 

rig
ht

s 
re

se
rv

ed
.



The threshold decorations are particularly elaborate during the
ponkal festival. The month before the festival is considered espe-
cially unlucky, in part because it is the coldest and dampest month
with infectious diseases common. The 3-day festival ends that
month, but it also marks the winter solstice, the Tamil New Year,
the transition from darkness to light, and the transition from an
unlucky month to a lucky one. It is a time of thanksgiving, visiting,
and rejoicing.
Some of the kolam represent objects; others represent animals,

birds, or various flowers or vines. Where the names of the designs
are available, we will include them. The designs, individually and as
groups, are rich in symbolic meaning. The multiple meanings are not
always as familiar to contemporary practioners, nor as accessible to
us, as are the designs themselves. Two symbolic meanings, however,
have particular significance for our interest in the construction
processes of the kolam.
In one type of kolam—pulli kolam—a grid of dots is first placed on

the ground. The dots are referred to as pulli. The configuration of the
grid is an important guide to placing the rest of the figure. Some kolam
are constructed by drawing lines connecting the pulli; for others, the
lines go around the pulli. Many of the kolam for which the lines go
around the pulli are made of a single continuous closed curve, and
others are made with a few continuous closed curves. These kolam
are related by interpreters to the continuous, never-ending cosmic
cycle of birth–fertility–death, and with the concepts of totality, perfec-
tion, and eternity. To some, the pulli represent the source, or raw
potential.
The importance of the pulli as defining elements of the kolam, and

the kolam as a familiar and distinctive element of Tamil Nadu culture,
is highlighted in the opening sequence of a late 1980s political film
made in India, in Tamil Nadu. In the sequence, the screenwriter, who,
for several years, was chief minister of the state, addresses the viewers
and concludes his comments by referring to the kolam and their frame-
work of pulli; he notes that just as those who place the kolam are
constrained by the dots, he must work within the limits of the law
‘‘to expose the hidden but powerful forces that are exploiting the
nation.’’
There are, in addition, other kolam, placed without dot grids, which

are also made up of one or a few continuous closed curves. These, too,
are associated with continuity and never-ending cycles.
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2 Before we embark on the picture languages, how and why they
became involved with the kolam tradition, and the specific

kolam that attracted study by computer scientists, let us look at a
few kolam designs in order to get some sense of their style and
configurations.
Figure 6.1 shows a group of kolam that are all different, yet share

similarities of component parts. In fact, close inspection shows that,
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Figure 6.1 Some kolam. (a) Sandal Cup; (b) Rosewater Sprinkler; (c) Hanging
Lamp; (d) Nose Jewel.
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with slight modification, the ‘‘Nose Jewel’’ (Figure 6.1d) is part of the
‘‘Hanging Lamp’’ (Figure 6.1c). All the designs in Figure 6.1 also are
symmetric with respect to a central vertical line. Figure 6.2 is another
group showing some similarities while being different. These, too, all
have vertical symmetry, but, with the exception of Figure 6.2g, they all
also have symmetry across a central horizontal line. Also, each of the
first four, that is Figures 6.2a–6.2d, also show 908 rotational symmetry
around a central point. Notice, also, that Figure 6.2a contains almost all
of Figure 6.2c within it. The kolam in Figure 6.3 are quite different
from those in Figures 6.1 and 6.2, and different from each other. They
do, however, all show rotational symmetry around a center point, but
the angles of rotation differ. For Figures 6.3a and 6.3c, there is 1808
rotational symmetry; for Figure 6.3b, it is 908; and for Figure 6.3d, it is
458. As we go on, we will show several kolam that are larger and more
elaborate; we will also discuss them in greater detail.

CHAPTER 6

166

Figure 6.2 Some kolam. (a) Vine Creeper; (f) The Ring; (g) Mountain Top.
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3 Gift Siromoney of Madras Christian College in Tamil Nadu
created the bridge between kolam and computer science. Through-

out his life, Siromoney combined his academic specialty with his deep
interest in the culture, history, and environment of Tamil Nadu. A
commemorative volume, published soon after his death in 1988,
contains a selected bibliography of about 100 publications. These
include, but are by no means limited to, computer recognition of
Tamil and Brahmi script, statistical studies of South Indian sculptures
and of Indus texts, and computer methods for dating Tamil inscriptions.
Siromoney also pursued an investigation of the kolam tradition, study-
ing its history, as well as the manner in which contemporary women
constructed and remembered the designs.
In one study, Siromoney compared the perception of kolam forms, in

terms of complexity and of similarities and differences, for two groups
of women—those familiar with kolam and those unfamiliar with them.
Because the designs were so well known to women in Tamil Nadu, the
‘‘knowers’’ who participated in the study were 19 Indian female college
students and the ‘‘nonknowers’’ were from out of the area, namely 14
American undergraduates from North Carolina who were attending a
Term-in-India program. In general, the American undergraduates saw
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Figure 6.3 Some kolam. (a) Mango Leaves; (b) Asanapalakai; (c) Parijatha Creeper;
(d) Lotus of the Heart.
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the figures as more complex and grouped figures based on size, as
contrasted to the Indian students who grouped them based on whether
they were made up of a single continuous closed curve or multiple
continuous closed curves.
With his wife, Rani Siromoney, a computer scientist, Gift Siromoney

became involved in the area of computer science dealing with picture
languages, that is, with the formal analysis and description of pictures.
Akin to natural languages and computer languages, picture languages
are made up of restricted sets of basic units and specific, formal rules
for putting the units together. The kolam designs provided a rich supply
of figures that could be used as examples of some languages and require
the creation of new languages. The Siromoneys and a group of compu-
ter scientists who worked with them, in particular Kamala Krithivasan
and K.G. Subramanian, contributed to the work on what are called
Lindenmayer languages (L-systems), but focused primarily on extend-
ing these to array L-systems. The kolam were used extensively by the
Siromoneys and their group, but kolam figures spread and can be found
as examples in the work of others.
The use of picture languages to generate kolam brings to the fore the

structures within specific kolam or within families of kolam. The
languages are, essentially, concise statements of algorithms, or formu-
las, for generating kolam. They make us more aware that the kolam are
careful constructions with definable growth patterns. It is important to
keep in mind, however, that the computer scientists are concerned with
analyzing and generating the figures, and are not necessarily replicating
the techniques or thought processes used by Tamil Nadu women.

4 The use of formal languages became of broad interest with the work
of linguist Noam Chomsky in the late 1950s. His concern was the

linguistic analysis of natural languages. He wished to separate gramma-
tical sequences of words in a language from ungrammatical sequences
by finding a set of rules that would generate all grammatical sequences,
but none of the ungrammatical sequences. Chomsky’s work incorpo-
rated the idea of using rewriting rules for strings of symbols. Computer
scientists became especially interested in formal languages when they
realized that they, too, were using the same ideas in establishing formal
definitions of newly created programming languages. These works, and
the works of others, eventually led to the picture languages of interest to
us. An important contribution along the way was the work of Aristid
Lindenmayer, a biologist interested in modeling plant growth.
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Let us look first at the rudiments of a simple formal language that is
not pictorial, but produces only strings of symbols. Then, we will see
how these strings of symbols can be translated into pictures.
There is, for each language, a fixed set of symbols. The set of

symbols is referred to by different names; we will call it the alpha-
bet. There is also a string of symbols that one starts with; a starting
string is generally referred to as the axiom. Each language has a set
of rules for creating new strings of symbols from previous ones.
These we call rewriting rules. And, there are what we will call
outcomes, which are the strings of symbols that result from applying
the rewriting rules.
Here is an example of a string language with an alphabet containing

just the three symbols A, B, C. (These symbols, then, are the only ones
that we can use.) Our starting string—the axiom—will be ABB. The
rewriting rules we will use are A! BC, B! A, and C! C. This says
that to create a new string from a previous string, replace each A by BC,
each B by A, and each C by C.

1. Start: ABB
2. Result of applying rewriting rule once: BCAA
3. Result of applying rewriting rules to the outcome BCAA: ACBCBC
4. Result of applying rewriting rules again: BCCACAC
5. And so on.

Here the letters are only symbols; they have no arithmetic or other
meaning. Creating a string of symbols by placing them adjacent to
each other is referred to as forming their concatenation. Here that
simply means that one is followed by the next. Notice that in each
step, the three rules are applied simultaneously (commonly referred
to as in parallel), not sequentially. That is, in each step, the B and C
newly introduced by applying the rule A ! BC remain unmodified
until a later step. This is characteristic of an L-language (Lindenmayer
language) as contrasted with some other languages. The language in
our example is also of the type called context-free languages because
each symbol is dealt with individually without reference to the neigh-
boring symbols. And, it is a deterministic rewriting system because
there is only a single possible rewriting rule for each of the symbols.
Here is another example of a deterministic, context-free, Linden-

mayer string language. For this example, we will use the alphabet F,
1, –, with starting string F 2 F, and rewriting rules F ! F 1 F, 1 !
1, – ! –.
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Start: F 2 F
Outcome 1. [F 1 F] 2 [F 1 F]
Outcome 2. [(F 1 F) 1 (F 1 F)] 2 [(F 1 F) 1 (F 1 F)]
Outcome 3. F1 F1 F1 F1 F1 F1 F1 F2 F1 F1 F1 F1

F 1 F 1 F 1 F
Outcome 4. F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1

F1 F1 F1 F2 F1 F1 F1 F1 F1 F1 F1 F1
F 1 F 1 F 1 F 1 F 1 F 1 F 1 F

..

.

etc.

The parentheses and brackets used above are not symbols in the alpha-
bet or in the outcomes; they are only included here to highlight the
substitutions. Again, it is important to keep in mind that, so far, the
symbols F, 1, and – have no arithmetic or other meaning.
Our next important step is to move from a string of symbols to a

picture and, hence, to picture languages. A way to do this, developed by
Przemyslaw Prusinkiewicz, is to interpret the symbols as ‘‘turtle’’
commands. Turtle graphics was originally an innovation introduced
to engage children in the creative use of computers. In it, the turtle is
thought of as sitting on a piece of paper, facing in some starting direc-
tion. The turtle can carry out a limited set of commands, such as move
forward while drawing a line, move forward without drawing a line,
turn left, and turn right. (The turtle’s tail is dirty. Hence, lowering his
tail draws a line as he moves, while raising his tail leaves no line.)
Specifically, here are the commands our turtle understands and the
symbols that convey those commands:

F: move forward by step length s while drawing a line;
f: move forward by step length s without drawing a line;
1: turn left (counterclockwise) through an angle of d degrees;
2: turn right (counterclockwise) through an angle of d degrees.

For each drawing, the start direction, step length, and turn angle must
be specified; the step length and turn angle remain the same throughout
the drawing. When following a string of commands, each turtle move
begins in the place and direction that the last one ended.

Let us assume that our turtle begins by facing to the right, that the step
length is one unit, and that the turn angle is 908. Then, the turtle inter-
pretation of the axiom F2 F in our previous string language example is:
move forward one unit while drawing a line, turn right 908, move
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− : turn right (clockwise) through an angle of d degrees.
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forward one unit while drawing a line. The pictorial result is shown in
Figure 6.4a. Figure 6.4b shows the pictorial result of the first outcome,
F 1 F 2 F 1 F. If, instead of using a turn angle of 908, we change the
specified angle to 458, the pictorial results would be as in Figures 6.4c
and 6.4d.

5 With this brief introduction to picture languages, we return to the
kolam and focus, in particular, on some known as kambi (wire)

kolam. The name reflects the fact that these kolam are created using a
single, continuous, closed curve. The curve may or may not intersect
itself. In a sense, a kambi can be thought of as made of a never-ending
line.
Before proceeding with the kambi kolam, however, we emphasize

that they constitute a special category of kolam; that is, there are many
other kolam that are made up of several closed curves or several lines
rather than by a single, continuous line which returns to where it began.
For some kolam, we can see by simply looking at them that more than a
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Figure 6.4 Turtle drawings. (a) F2 F (d¼ 908); (b) F1 F2 F1 F (d¼ 908); (c) F2 F
(d ¼ 458); (d) F1 F 2 F 1 F (d ¼ 458).

specified angle to 135º, the pictorial results would be as in Figures 6.4c

(d = 135º); (d) F + F − F + F (d = 135º).
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single line must be used. Notice in Figure 6.2a, for example, that parts
of the kolam are completely disconnected from the other parts, and so
several, separate lines must be used.
Evenwhere there is no visible disconnection, we can know, based on a

theorem from graph theory, when more than one line is necessary.
According to that theorem, simply stated, for a single continuous line
that returns to its starting point to be possible, each intersection in the
figuremust have an even number of lines emanating from it. (If the figure
includes just two intersections with an odd number of lines emanating
from them, a single continuous line can be used, but it does not return to
its starting point.) Look, for example, at Figures 6.3a–6.3c. Each has
several intersection points fromwhich three lines emanate. Thus, each of
these three kolam must involve the use of more than one line. But for
those that theoretically can be drawn using a single continuous closed
curve, we cannot know, unless it is so designated by the maker of the
kolam, whether it is actually done that way.
Figure 6.5a is an example of a kolam that could be drawn as a

single kambi, but, from the study of the procedures used by Tamil
Nadu women, we know that it was not. The steps used by the women
whose procedures Gift Siromoney studied are shown in Figure 6.5.
After laying out a five-by-five grid of pulli, they proceeded to draw a
closed curve (Figure 6.5b), and then repeated the same curve three
times, but each time they rotated the curve through 908 (Figures
6.5c–6.5e). The kolam was completed by drawing a frame, another
closed curve, around the interlocking curves—again, see Figure 6.5a.
Hence, for this kolam, the 908 rotational symmetry that we see in the
finished drawing is more than simply an externally imposed concept
based on our viewing of the completed figure; the rotational symme-
try is the characteristic of the figure motivating the construction
procedure.
Figure 6.6 shows a family of kolam named ‘‘Anklets of Krishna.’’

Each of these is a kambi kolam. A family is a set of curves that are
different, but related by some common characteristic. As you look at
the curves, you can see that the larger curves are made up of several
copies of the smaller curves. Perhaps you can even see that there is a
pattern to the way the subpatterns of each are linked. These patterned
repetitions are what intrigued the computer scientists. For this family,
they sought a picture language whose outcomes would be the different
members of the Anklets of Krishna family, and no others. Although
the languages developed do not necessarily replicate the drawing
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procedures used by the Tamil Nadu women, they do, none the less,
give us insight into the inner structure of the figures.
Clearly, because of the definition of turtle moves, the pictures drawn

by the turtle are always angular and made up of linear segments. Most
of the kolam, however, like the Anklets of Krishna, are smooth curves,
and so, some adaptations or other modes of drawing were used. Some
computer scientists used the turtle moves and produced angular
versions of the kolam. Another approach was to produce the angular
versions and then smooth them using auxiliary techniques. Based on
their study of the fundamental drawing units used by the Tamil women,
the Madras group, instead, defined idealized ‘‘kolam moves’’, which
result in smooth curve segments. The turtle, as conceived of in turtle
geometry, cannot carry out these kolam moves. A creature that leaves a
sinuous trail and fits Tamil mythology is a snake. The full complement
of kolam moves and the symbols associated with them are shown in
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Figure 6.5 A kolam as drawn by Tamil Nadu women.
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Figure 6.7. They are F (move forward one unit), R1 (move forward
while making a half-turn right), R2 (move forward and make a u-turn to
the right), R3 (more forward while making a full loop to the right), L1

(move forward while making a half-turn left), L2 (move forward and
make a u-turn to the left), and L3 (move forward while making a full
loop to the left). As with the turtle commands, a starting direction and
unit length always must be specified. For the kolam move drawings and
turtle move drawings that we use as illustrations, a convenient unit
length will be selected to fit the page and make the details visible.
That is, the unit length remains the same within each drawing, but
may vary from drawing to drawing.
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Figure 6.6 Anklets of Krishna. (The pulli are not produced by the string language.
They are, however, produced by the array language described later.) (a) Axiom; (b)
Stage 1; (c) Stage 2.
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For the Anklets of Krishna, the only kolam moves needed are F, R1,
and R3. The axiom for the language producing the family is R1FR3 FR3

FR3 FR1, and the rewriting rules are F ! F, R1 ! R1FR3FR1 and R3 !
R1FR3FR3FR3FR1. Figure 6.6a is the pictorial representation of the
axiom with the starting point and starting direction marked. Figure
6.6b is the pictorial representation of the outcome resulting from apply-
ing the rewriting rules just once; that is,

ðR1FR3FR1ÞFðR1FR3FR3FR3FR1Þ
FðR1FR3FR3FR3FR1ÞFðR1FR3FR3FR3FR1ÞFðR1FR3FR1Þ:

Here, again, the parentheses are only to assist in identifying the substi-
tutions.
This language concentrates on the figure and does not include the

pulli, nor does it precede the figure by placing the pulli. (The pulli,
however, are included in Figures 6.6a–6.6c as we will return to use
them again to illustrate another approach.) Describing the pictorial
representation of the axiom (Figure 6.6a) as a flowerlet with four
petals, the pictorial effect of applying the rewriting rules is to replace
each of the four petals by a four-petaled flowerlet (Figure 6.6b). In the
next stage, created by applying the rewriting rules to the outcome
above, each flowerlet is replaced by a set of four flowerlets. Thus,
with successive rewritings, these grow from one to four to sixteen
flowerlets. If the rewriting rules are applied a third time, the next
member of the Anklets of Krishna family would have sixty-four flow-
erlets. You are invited to continue the process, using the rewriting
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Figure 6.7 Kolam moves.
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rules and the kolam move interpretation of the resulting strings of
symbols. Or, if you think that you have grasped the pattern expressed
by the rewriting rules of the string language, try to directly draw the
next member of the family.
The type of growth seen in this family of curves is called exponential

growth. The number of flowerlets in successive stages grows from 1 to
4 to (4 £ 4) to (4 £ 4 £ 4) to (4 £ 4 £ 4 £ 4), or, using exponents to show
the number of fours multiplied, the number of flowerlets are 1, 41, 42,
43, 44, and so on. For each successive stage, it is the exponent that
increases, and, hence, the growth is termed exponential.

6 Let us look at one more kolam produced by a deterministic
context-free L-system. This kolam is different in kind, as it is

one that is placed without pulli. Furthermore, although it is a kambi
kolam, it is one that does not intersect itself. Named ‘‘the Snake,’’ this
kolam particularly attracts our attention because of its relationship to
mathematical objects called fractals, and, what is more, to a special
category of curves within them.
Figure 6.8 shows one member of the Snake family. When discussing

the pictorial language that produces it, we will use turtle moves and,
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Figure 6.8 The Snake kolam.
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hence, produce an angular version of the kolam. We do this for simpli-
city and, also, to follow the path used in the computer science literature.
There, after producing the angular version, they went on to apply a
formal smoothing technique. We, instead, stop with the angular
version, and leave the reader to imagine the smoothing.
For the turtle drawings of the Snake language outcomes, the speci-

fied angle is 458, and the turtle begins by facing to the right. For
convenience of writing and visualization, we add to the basic symbols
F, 1, and 2, another symbol, A. A is always to be interpreted by the
turtle as the sequence of commands F1 F1 F2 2 F2 2 F1 F1
F1 F. The pictorial representation of A is shown in Figure 6.9a. In all,
the L-system is:

axiom: A 2 2 F 2 2 A 2 2 F
rewriting rule: A ! A 1 F 1 A 2 2 F 2 2 A 1 F 1 A
first outcome: (A1 F1 A2 2 F2 2 A1 F1 A)2 2 F2 2

(A 1 F 1 A 2 2 F 2 2 A 1 F 1 A) 2 2 F
..
.

etc.

The turtle representation of the axiom is shown in Figure 6.9b, and the
representation of the first outcome is in Figure 6.9c. In Figure 6.9d, the
second outcome is shown. Focusing on the pictorial representation of
A, and the way replications of it are joined together, can help to see how
the rewriting rule gives rise to the visual results.
From the drawings, we can see that the growth is exponential, as was

the case with the Anklets of Krishna. Each of the arms in the four-
armed cross in the axiom’s depiction is replaced by a four-armed cross.
Then, each of the crosses within that figure is replaced with a set of four
crosses just like itself. Thus, it grows from one four-armed cross
(Figure 6.9b) to a cross made up of four four-armed crosses (Figure
6.9c) to another cross made up, in turn, of four of these (Figure 6.9d),
and so on. Figure 6.8 is, then, the smoothed version of the third
outcome, namely, a cross made up of subcrosses, containing, in all,
43 or 64 of the beginning four-armed crosses. Both the Anklets of
Krishna and this example of exponential growth involve powers of 4,
but that need not be the case. The growth could just as well be related
to, say 3 or 5, as with 1, 3, 9, 27, … or 1, 5, 25, 125, … .
Theoretically, we could continue indefinitely to generate new figures

by successively applying the rewriting rule to the symbol string just
produced. In the resultant figures, at each stage, there would be four
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replications of the earlier stage combined in the same patterned way.
Thus, we see that the overall process contains a recurring component,
and the different resulting curves are expressions of the different
number of times that component is repeated. The mathematical term
for it is a recursive process; that is, it is one in which the result of a
process is put back through the process to be further refined. As a result,
the process leads to a mathematical object called a fractal. The essence
of a fractal is that it is self-similar.

CHAPTER 6

178

Figure 6.9 The Snake (angular version). (a) A; (b) Axiom; (c) First outcome; (d)
Second outcome.
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Let us suppose that as part of the process the step length was modified
from stage to stage so that each resulting figure fitted into the same size
square. Then, in the infinite case, if you focused on any part of the figure
and magnified it to the size of the entire figure, it would be similar. The
infinite version of the Snake kolam would not only be a self-similar
curve; it would also be composed of four self-similar curves. In addi-
tion, although each successive curve fits into the same size square, the
lengths of the successive curves are increasing. While the area contain-
ing them remains the same, their lengths grow exponentially.
Some of the properties of the figure place it in a special category

within fractals. As we have already said, the curve is made up of a
single, continuous line which never intersects itself, and which ends
where it began. In mathematical terms, these properties make it a
simple closed curve. And, since it never intersects itself and its
parts never touch each other, it is a self-avoiding curve. In addition,
still following the stipulation that the successive figures are scaled
to fit into the same size square, as the number of crosses and
number of arms per curve increase, the curve gets closer and closer
to any point that one can specify in the square in which it is being
drawn. For one of the curves in the sequence, and for every curve
thereafter, the curve gets as close as is wanted to any point in the
square. In the infinite case, it would fill the entire square—hence, it
is called a space-filling curve. The combination of these character-
istics leads to the finite figures being deemed FASS curves (that is,
approximately space-Filling, self-Avoiding, Simple, self-Similar
curves.) What is more, the angular version of the Snake kolam
has been identified with a variant of the classical FASS curve
known as ‘‘the Sierpiński curve’’ (a curve named for the mathema-
tician Wacław Sierpiński who first discussed it in 1912), and the
Snake kolam as a smoothed version of that mathematically well-
known curve.
When first discussed in the mathematics literature in the late nine-

teenth/early twentieth century, fractals were thought very strange and
even monstrous. Among the most famous early examples were the
Koch ‘‘snowflake’’ and the Sierpiński space-filling curve. Then, due
to the writings of Benoit Mandelbrot in the 1970s, the concept of a
fractal was seen to provide a means of describing numerous objects
occurring in nature. Since then, fractals have attracted much attention
and interest. It is, at first, unexpected to find several of these same
characteristics embodied in a traditional design. Upon reflection,
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however, we realize that it is, perhaps, the mental processes shared by
humankind that result in Koch ‘‘snowflakes,’’ Sierpiński curves, or the
Snake kolam, and which are called upon to put order on what is seen in
the natural world.
Through the mathematical analysis and descriptors, we are led to see

more properties of the Snake kolam than we otherwise might have. Not
only, for example, do we see 908 rotational symmetry and repetition,
but we also see a pattern to the repetition. We can also better understand
why, as we look carefully at the Snake kolam, we seem to be drawn
deeper and deeper into the figure.

7 Inspired by the diversity of kolam figures, the Madras computer
science group pursued new types of picture languages. Their focus

was on capturing the two-dimensional nature of the kolam. A figure,
such as the Anklets of Krishna, may be drawn with a single line and,
hence, be defined by a string of symbols. The dot grid that precedes it
and the resultant figure are none the less a two-dimensional layout. For
the Anklets of Krishna, from one stage to the next, the family members
are planar figures, expanding in the plane in some patterned way. View-
ing the kolam as planar figures is more inclusive because it incorporates
the many kolam that cannot be described by recursive string languages,
or drawn with a single line. Many of these as well constitute families.
While some of the families can be characterized as juxtaposed repeti-
tions of the same basic unit, others are related by themes that are carried
out through subprocesses that recur a variable number of times.
To see some families that exemplify this variety, we return to Figure

6.3. Each of the kolam in Figures 6.3a–6.3d, and the kolam in Figure
6.2g, are single representatives of families of kolam. A smaller relative
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Figure 6.10 Other members of families represented in Figure 6.3. Compare parts a
and b of this figure to parts a and b of Figure 6.3. (a) Mango Leaves; (b) Asanapalakai.
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of the Mango Leaves of Figure 6.3a is shown in Figure 6.10a. It has a
three-row arrangement of 1, 2, and 1 interior hexagons, as contrasted to
Figure 6.3a which has 2, 3, and 2 interior hexagons. There are others in
the family: for example, there are two five-row arrangements, one with
1, 2, 3, 2, 1 interior hexagons, and another with 3, 4, 5, 4, 3 hexagons.
The kolam in Figure 6.10b is a larger version of the Asanapalakai of
Figure 6.3b. While it is enlarged by an extension to the side, another,
yet larger, member of this family (not shown), extends to both sides and
upwards, thus containing six basic units as contrasted to the one and
two units in those that are shown.
The Parijatha Creeper of Figure 6.3c belongs to still another family.

As contrasted to this kolam with six leaflets (arranged as three rows of
two each), another in the family has ten leaflets (arranged as five rows
of two each). Two other relatives have just one leaflet in each of the first
and last rows and so, in total, have four leaflets and eight leaflets,
respectively. And, the Mountain Top kolam (Figure 6.2g) also comes
in many sizes. The family members can be characterized by their
central heights of 2n 1 3 pulli and maximum widths of 4n 1 3 pulli,
for any integer n. Figure 6.2g is the Mountain Top kolam for n¼ 2; that
is, it is the member of the family with a height of 7 pulli and maximum
width of 11 pulli.
Thus, with this variety in mind, the Madras group developed new

array languages in which the outcomes are arrays of symbols, and the
rules specify how, for families of kolam, the arrays are formed. Some of
the array languages are recursive, and some are not. That is, in some
languages, the arrays at successive stages are developed from the array
of the preceding stage, while in others, each array is developed inde-
pendently, but from the same general rules. Some of their languages
address rectangular arrays, which lead to dot grids, and figures, which,
for all family members, retain such shapes as squares, isosceles trian-
gles, diamonds, or hexagons. Notice, for example, the hexagonal dot
layout in Figure 6.3c, the diamond-shaped layout for the Anklets of
Krishna (Figure 6.7), and the essentially triangular layout of Figure
6.2g. They also considered radial dot layouts, as seen in Figure 6.3d.
In some of these languages, the individual symbols contained in an

array are pictorially interpreted as two-dimensional subfigures that are
assembled as specified by the layout of the symbols in the array. As an
example, we return again to the Anklets of Krishna. For this, just the
three symbols A, B, and C are used. The flowerlet (with dots) shown in
Figure 6.6a is the pictorial representation of symbol A, a small diamond
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(with a centered dot) is the representation of symbol C, and a blank
represents symbol B. The symbolic arrays are produced recursively.
The first three of them, without the rules for moving from one to the
next, are shown in Figures 6.11a–6.11c, respectively. The pictorial
representations of the arrays are the drawings, including the dots, in
Figure 6.6. These are the same pictures that were seen before, but they
are arrived at in a different way.
Although the method just described results in figures that include the

dots and, so, are closer to the actual kolam, a crucial difference still
remains: in the drawing procedures of the Tamil Nadu women, the dot
layouts precede, and in some way determine, the completion of the
figures. Hence, still other, and yet more complicated, array languages
were designed to reflect more closely the drawing techniques used by
the Tamil women. For these, the symbols in the arrays are interpreted as
dots classified into different types. The spatial layout of the dots are
specified by the layouts of the symbolic arrays. Then, a small set of
specific instructions, such as ‘‘join dots of one type to dots of a second
type by going around dots of a third type,’’ were given for drawing the
figures.
In the development of the languages, several theoretical challenges

had to be overcome. For example, the definitions of concatenation were
extended and made more elaborate, and a means of overcoming the
problem of shearingwas introduced. Shearing occurred when, for exam-
ple, the symbol A in an array was replaced by the differently configured
group of symbols CD

B . The latter was resolved by separating the rewriting
into two phases, thus creating parallel/sequential languages.
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Figure 6.11 Symbolic arrays for the Anklets of Krishna. (The pictorial representation
of A, including the pulli, is shown in Figure 6.6a; B is interpreted as a blank; and the
pictorial representation of C is a small diamond with a centered dot.) Compare parts a–c
of this figure to parts a–c of Figure 6.6.

B B B A B B B
B B A C A B B

B A B B A B A B A B
A A C A A C A C A C A

B A B B A B A B A B
B B B A B B B

(a) (b) (c)

B B B A B B B
B B A C A B B
B A B A B A B
A C A C A C A
B A B A B A B
B B B A B B B

(c)

B A B
A A C A

B A B
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Whatever else these languages contributed to theoretical computer
science, they surely contributed by introducing the study of figures that
arose in a context other than formal mathematics itself. As such, new
questions were raised, and new answers had to be found. In addition,
these languages focused attention on the structural variety of the kolam
studied.
The final kolam family that we look at is one that is simple to draw.

The members of the family are kambi kolam. They particularly attract
us because, as well as appearing alone, they can be seen as building
blocks in other, more elaborate kolam. Furthermore, they are similar to
designs found in other religious settings, such as carvings on temple
walls. The family has been described by a string language, different
from the type we discussed in Sections 4–6, but one where the symbol
strings are interpreted by kolam moves. The symbol string for the nth
outcome, without describing the language that led to these results, is:

ðF2nR2F
2nL2ÞnF2nR3ðF2nL2F

2nR2Þn for n¼ 1; 2; 3…

where the exponent indicates the number of times a move or set of
moves is to be repeated. That is, for the first outcome (n¼ 1), the string
is (F2R2F

2L2)F
2R3(F

2L2F
2R2), and for the second (n ¼ 2), it is

(F4R2F
4L2)

2F4R3(F
4L2F

4R2)
2. Figure 6.12 contains drawings of the

first, second, and third stages, including the pulli that precede them.
The way this kolam family grows is interesting. Focusing on the

small diamonds that make up the large interior diamond, for the succes-
sive stages, n¼ 1, 2, 3, the number of diamonds increases from 2 £ 2 to
4 £ 4 to 6 £ 6. In general, the nth stage figure contains 2n £ 2n ¼ 4n2

small diamonds. This mode of growth is called polynomial growth
because it behaves like the polynomial 4n2. It is a slower mode of
growth than was encountered in the Snake and Anklets of Krishna,
which, in contrast, behaving like 4n, had exponential growth.
By following with your finger the drawing steps for one or two

members of this family, the next stage figure can easily be drawn,
with or without reference to the symbol string. Doing this, and so
experiencing the kolam kinesthetically, can help to remind us that
the figures, drawn from memory on Tamil Nadu thresholds, were
produced by human hand and wrist motions.

8 The kolam on the threshold are transient. Made with rice powder
placed on the ground, they are walked upon and blown or swept

away. None the less, the tradition evidences a number of mathematical
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ideas. The kolam are diverse, and so not all of the ideas are present in
all of them. Some summarizing observations can be made based on the
kolam as a group.
1. For one category of kolam, the kambi kolam, the women of Tamil

Nadu are interested in drawing figures continuously, ending where one
began. The interest extends beyond the use of a single closed curve to
the construction of figures that juxtapose several closed curves.
2. Visual symmetry is obviously of considerable importance as

almost all of the kolam are, in some way, symmetric. Symmetry across
a central vertical line is found in most of them. Those that do not show
this symmetry generally show rotational symmetry through 908 or 1808.
And in many cases, those kolam with vertical symmetry show horizon-
tal symmetry as well.
3. Within the corpus of kolam, there are sets of figures that are

visually related. Some of the figures include other figures as component
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Figure 6.12 An unnamed kambi kolam. (The pulli have been added. They are not
produced by the picture language.)
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parts, or are built up by using some of the same components differently
arranged. Most distinctive and most important, however, is that there
are figures that are united by geometric and logical patterning. We
referred to these figure groupings as families. The fact that the Tamil
designate each of the kolam in the group by the same name is testimony
that family members were considered related to each other. Even with-
out knowing the specific techniques used by the Tamil Nadu women to
remember and construct the various members of a family, it is quite
probable that each member of a family was a specific expression of a
general technique.
4. The first step in most of the kolam was the placement of a pulli

array. These arrays had different spacings and different overall
configurations depending on the kolam to be drawn. The pulli served
to guide and control the drawing process, and thereby define the final
figure. Thus, the learning, remembering, and drawing of kolam
combined conceptualizations that were both spatial and procedural.
In the kolam tradition, we see designs that are decorative, yet rich in
formal structure. Furthermore, the designs are deeply embedded in
Tamil Nadu culture, as they are intertwined with aesthetic and philo-
sophical concepts, as well as with religious beliefs and practices.
They are a necessary part of the knowledge and skills that women
learn, and they constitute significant statements made by households
on a daily basis. The underlying structures are, no doubt, an impor-
tant part of the learner’s ability to commit them to memory, as well
as an important part of the appreciation of the figures by the commu-
nity of viewers.

Notes

1. The quotation in the introductory section of the chapter is from The King and the
Clown in South Indian Myth and Poetry, David D. Shulman, Princeton University
Press, Princeton, NJ, 1985, p. 332. Pages 3–7 of the book contain valuable discus-
sion of kolam as related to Tamil philosophy. The most extensive cultural study of
kolam is ‘‘Kōlam: form, technique, and application of a changing ritual folk art of
Tamil Nadu,’’ Ralph M. Steinman, pp. 475–491 in vol. I and pp. 131–135 in vol. II
of Shastric Traditions in Indian Arts, Anna L. Dallapicolla, ed., Steiner, Stuttgart,
1989. (My discussion of the Tamil usages of the words kolam and mūli from pp.
482–483 in this article.) Some earlier useful references are South Indian Customs,
P.V. Jagadı̄sa Ayyar, Diocesan Press, Madras, 1925 (reprinted by Asian Educa-
tional Services, New Delhi, 1982), pp. 69–73, 82–88 and ‘‘Preliminary note on
geometrical diagrams (kolam) from the Madras Presidency,’’ H. Gnana Durai,
MAN, vol. 29, May 1929, pp. 77–78.
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Specifically focusing on kolam, R. Narasimhan’s ‘‘The oral-literate dimension in
Indian culture,’’ pp. 67–79 in Indological Essays: Commemorative Volume II for
Gift Siromoney, Michael Lockwood, ed., Dept. of Statistics, Madras Christian
College, Madras, 1992, presents a discussion of the importance of recognizing
the sophistication of oral traditions, as well as textual traditions.
Ramanujan’s use of proverbs and allegories is noted in Toils and Triumphs of

Srinivasa Ramanujan the Man and the Mathematician, Wazir Hasan Abdi, National
Publishing House, Chaura Rasta, Jaipur, 1992. Pages 2–21 integrate details about
Ramanujan with details about the surrounding culture. For those unfamiliar with
Ramanujan, The Man Who Knew Infinity: A Life of the Genius Ramanujan, Robert
Kanigel, Scribner, New York, 1991, can serve as an introduction.
The quoted phrase about pulli is from pp. 10–11 in ‘‘‘We must make the govern-

ment tremble’: Political filmmaking in the South Indian state of Tamil Nadu,’’
David B. Pratt, The Velvet Light Trap, Number 34, Fall 1994, pp. 10–39 (published
by University of Texas Press, Austin, TX). This article provides insight into Tamil
Nadu culture, as well as its uneasy relationship with India. In particular, it discusses
the vibrant Tamil Nadu film industry, which, in 1980, produced over 140 films. The
specific film cited here is Ithu Engal Neethi, written by Muthuvel Karunanidhi, and
directed by S.A. Chandrasekharen.

2. The kolam in Figures 6.1a and 6.1c are reported in ‘‘Array grammars and kolam,’’
Gift Siromoney, Rani Siromoney, and Kamala Krithivasan, Computer Graphics and
Image Processing, 3 (1974) 63–82, and the kolam in Figure 6.1b is reported in
‘‘Labyrinth ritual in South India: Threshold and tattoo designs,’’ John Layard, Folk-
lore, 48 (1937) 115–182. Both Layard and Archana (The Language of Symbols: A
Project on South Indian Ritual Decorations of a Semi-Permanent Nature, Crafts
Council of India, Madras, 1981) report the kolam in Figure 6.1d. However, in
Archana, the figure is inverted.
The kolam in Figures 6.2a and 6.2g are reported in the article by Siromoney et al.

cited just above. Those in Figures 6.2b–6.2f are reported in Layard’s article. Figure
6.2e is also reported in Archana.
The kolam in Figure 6.3c is reported in the article by Durai and the article by

Steinman (both referenced in the Section 1 notes of this chapter). Slightly different
versions of this kolam are found in Siromoney et al., and in the article by Narasim-
han (cited in Section 1 notes). As contrasted to the six flowerlets, which compose the
kolam shown in Figure 6.3c, the two kolam in Siromoney et al. have four and eight
flowerlets, and the kolam in Narasimhan has ten flowerlets. This is an example of a
family of kolam as discussed later in this chapter, in Sections 5 and 7. The kolam in
Figure 6.3a is reported in Durai. Three different members of this kolam family are
found in Siromoney et al., as are three different members of the Mountain Top
family (Figure 6.2g). The kolam in Figure 6.3b is reported in Durai and in ‘‘South
Indian kolam patterns,’’ Gift Siromoney,Kalakshetra Quarterly, 1 (1978) 9–14. The
latter also contains two additional members of this family. The kolam in Figure 6.3d
is reported in Siromoney et al. (Several of the kolam in these figures were noted as
reported by Layard. While I accept the validity of these figures, I am skeptical of his
underlying thesis and his discussion and interpretations. In ‘‘South Indian kolam
patterns’’ (p. 10), G. Siromoney also notes Layard’s limited knowledge of the kolam,
as does Archana in The Language of Symbols… (p. 83). Paulus Gerdes, ‘‘Recon-
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struction and extension of lost symmetries: Examples from the Tamil of South
India,’’Computers and Mathematics With Applications, 17 (1989) 791–813, follows
Layard, but even goes further to reconstruct what he believes to have been the
original Tamil intentions.)

Twelve more elaborate kolam by M. Gandhimati, with an introduction by Ulrike
Niklas, can be viewed on the website of the Institute of Indology and Tamil Studies,
University of Cologne (www.uni-koeln.de/phil-fak/indologie/kolam/kolam1/
kolamsmg.html). Also on the IITS website is a statement about kolam and why
the word was selected as the title for their journal of Tamil cultural studies.

3. The commemorative volume that includes Gift Siromoney’s bibliography is A
Perspective in Theoretical Computer Science: Commemorative Volume for Gift
Siromoney, R. Narasimhan, ed., Series in Computer Science, vol. 16, World Scien-
tific, London, 1989. (A second commemorative volume, published under different
auspices, has already been mentioned in the Section 1 notes above.)

I am greatly indebted to Rani Siromoney for her January 1997 letter and for
sending me some articles, several references, and a 25-page original manuscript
by Gift Siromoney entitled ‘‘Studies on the traditional art of kolam,’’ Working Paper
#1, May 1985. Kamala Krithivasan also was kind enough to send me a 4-page paper
of her own (‘‘Picture languages and kolam patterns’’). In response to one of my
questions about practioners of the kolam tradition, Krithivasan, in her February
1997 letter to me, noted that she, herself, draws these patterns in the courtyard in
front of her house.

Two articles by Rani Siromoney present comprehensive technical overviews of
the work of the Madras group and its relationship to other picture language studies.
They are ‘‘Array languages and Lindenmayer systems—a survey,’’ pp. 413–426 in
The Book of L, Grezegorz Rosenberg and Arto Salomaa, eds., Springer-Verlag,
Heidelberg, 1986, and ‘‘Advances in array languages,’’ pp. 549–563 in Graph
Grammars and Their Application to Computer Science, Harmüt Ehrig, Manfred
Nagl, Grezegorz Rosenberg, and Azriel Rosenfeld, eds., Lecture Notes in Computer
Science, #291, Springer-Verlag, Heidelberg, 1987. The former contains an exten-
sive bibliography, including about 100 references to the work of the members of the
Madras group.

Two additional articles that specifically involve kolam drawings and were parti-
cularly useful are Gift Siromoney’s Perception of Structure and Complexity in
South Indian Kolam Patterns, Scientific Report #62, Department of Statistics,
Madras Christian College, 1986, and ‘‘Kambi kolam and cycle grammars,’’ G.
Siromoney, R. Siromoney, and T. Robinson, pp. 267–300 in the World Scientific
commemorative volume noted above. (This latter article is a revised and lengthened
version of ‘‘Rosenfeld’s cycle grammars and kolam’’ by G. Siromoney and R.
Siromoney, in Graph Grammars and Their Application to Computer Science,
fully referenced above.)

4. For a very brief statement of the aim and approach of his early work on formal
grammars, see Noam Chomsky’s Syntactic Structures, Mouton, The Hague, 1957,
pp. 13–17, 109–110.

An excellent introduction to L-systems and their interpretation as turtle graphics
is The Algorithmic Beauty of Plants, Przemyslaw Prusinkiewicz and Aristid Linden-
mayer, Springer-Verlag, New York, 1990, pp. v–vii, 1–18. Overall, this is a beauti-
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ful and fascinating book that is highly recommended. Another very good introduc-
tion is chapter 8 (pp. 1–65) in Fractals for the Classroom, Part two, Heinz-Otto
Peitgen, Harmüt Jürgens, and Dietmar Saupe, Springer-Verlag, New York, 1992
(published in cooperation with the NCTM-National Council of Teachers of Mathe-
matics). The concept of turtle graphics itself is presented in Seymour Papert’s
Mindstorms: Children, Computers, and Powerful Ideas, Basic Books, New York,
1980.

5. Kambi kolam are specifically discussed in the article by Siromoney, Siromoney,
and Robinson, and in the working paper by Gift Siromoney, both cited in the notes
for Section 3. The latter, as well as the article by Narasimhan (see notes for Section
1), discuss the procedures that were found to be used by Tamil Nadu women.
The definition of the kolam moves and their use in producing the Anklets of

Krishna are in the article by Siromoney, Siromoney, and Robinson. Discussion of
the production of an angular version, followed by the use of splines for smoothing,
is in ‘‘Applications of L-systems to algorithmic generation of South Indian folk art
patterns and Karnatic music,’’ Przemyslaw Prusinkiewicz, Kamala Krithivasan and
M.G. Vijayanarayana, pp. 229–247 in the commemorative volume edited by Nara-
simhan (see the notes for Section 3).
The theorem from graph theory (Euler’s theorem) is discussed in chapter 2 in

my book Ethnomathematics: A Multicultural View of Mathematical Ideas, Chap-
man & Hall/CRC, paper ed. 1994 in relation to the sand-drawing tradition of the
Malekula of Vanuatu. That discussion also enlarges on the distinction between the
tracing procedures used by the Malekula men and what we see in completed
figures.

6. FASS curves are briefly discussed in the book by Prusinkiewicz and Lindenmayer
(see notes for Section 4), and in much greater detail in an article by them and F.
David Fraccia: ‘‘Synthesis of space-filling curves on the square grid,’’ pp. 341–366
in Fractals in the Fundamental and Applied Sciences (proceedings of the First
IFIP Conference, June 1990), Heinz-Otto Peitgen, José Marques Henriques, and
Luis Filipe Penedo, eds., North-Holland Press, Amsterdam, 1991. The latter
includes a discussion of the generation of a variant of the Sierpiński space-filling
curve, and ends by showing the Snake kolam as an example of a smooth space-
filling curve. It notes, however, that although, intuitively, the curve is self-avoid-
ing, the extension of the definition to include smooth curves is still an open
question. (Although the article refers to the curve as the Sierpiński curve, it is a
variant of it. The difference is that all line segments within the curve are of equal
length, as contrasted to Sierpiński’s original curve in which some of the lengths
differ.) Figure 6.12 is reprinted from p. 364 of this article with permission from
Elsevier Science. The article also includes the angular and smoothed versions of
the Anklets of Krishna. (The picture language to produce the Snake is also
discussed in the last article cited in the notes to Section 5.)
The Koch snowflake and Sierpiński space-filling curve, although both commonly

used as examples of fractals, were first discussed in 1904 and 1912, respectively,
prior to the coining of the word ‘‘fractal’’ by Mandelbrot in the 1970s. It should be
noted that discussions of fractals often also use other examples associated with the
name Sierpiński, such as the Sierpiński arrowhead, carpet, and gasket. For a general
introduction to fractals, see Fractals: Endlessly Repeated Geometrical Figures,
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differ.) Figure 6.8 is reprinted from p. 364 of this article with permission from
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Hans Lauwerier (English translation by Sophia Gill-Hoffstädt), Princeton Univer-
sity Press, Princeton, NJ, 1991, and for more about space-filling curves and their
history, see Space-Filling Curves, Hans Sagan, Springer-Verlag, New York, 1994.

7. The array languages are discussed in the two articles by R. Siromoney cited in the
notes to Section 3, and in Patrick S. Wang’s ‘‘Sequential/parallel matrix array
languages,’’ Journal of Cybernetics, 5 (1975) 19–36. Extensions to specially shaped
arrays are discussed in, for example, ‘‘Hexagonal arrays and rectangular blocks’’
and ‘‘Radial grammars and radial L-systems,’’ both by the Siromoneys. Both arti-
cles are in Computer Graphics and Image Processing, the former on pp. 353–381 of
vol. 5(1976), and the latter on pp. 361–374 in vol. 4 (1975). In terms of providing
specific details of kolam-producing array languages, the most comprehensive refer-
ence is the article by the Siromoneys and K. Krithivasan cited in the Section 2 notes.

The symbol string for the final kambi kolam, and the language producing it, are
discussed in the article by the Siromoneys and T. Robinson cited in the Section 3
notes. The similarity of the n ¼ 1 kolam to other traditional designs is discussed in
G. Siromoney’s ‘‘South Indian kolam patterns’’ (see Section 2 notes). More elabo-
rate kolam using members of this family as building blocks are seen, for example,
on pp. 137, 140, and 149 in Layard’s article (see Section 2 notes).
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CHA P T E R 7

Epilogue

1 The mathematical ideas presented in the foregoing chapters are
spread over time, space, and cultures. They have also involved a

variety of materials. Rather than marks on paper, the ideas have been
expressed through seed arrays, lines in the dust on a tray, palm ribs tied
together with coconut fibers, incised wooden blocks, inscribed stone
monuments, or rice-powder configurations on the ground. These are not
the usual stuff of mathematics, but, clearly, the medium itself is not the
central focus. What concerns us is how it is used.
In the discussion of two-valued logic in Chapter 1, we moved from

the shapes 1 and 0 printed on paper, to electricity flowing and not
flowing in a circuit, to one seed and two seeds in sikidy. What matters
is that there are two distinct signs and that there are rules determining
which of the two will result when they are combined in specific ways.
From a mathematical point of view, it is just as acceptable to use one
seed and two seeds for the signs as it is to use two distinct shapes
printed on paper or the presence or absence of electricity. As physical
objects, the stick charts of the Marshall Island navigators (Chapter 4),
when contrasted with diagrams printed on paper, may be heavier to
carry or seem cumbersome to us in other ways. And, of course, we are
less familiar with the visual conventions of such charts. But it is their
role as explanatory models, and the framework underlying the Marshal-
lese wave piloting system that the charts embody, that are of primary
significance. Furthermore, despite the fact that these and the other
Marshallese stick charts that are maps were, at first glance, classed
together solely because of their material likeness, the models and
maps clearly differ in concept and in content.
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Although different materials may have different limitations, and we
may be more conscious of their limitations when they are unfamiliar,
the materials can also harbor different potentials. For example, the Inca
quipus, which we have discussed at length elsewhere, are assemblages
of colored, knotted cords encoded using a sophisticated logical-numer-
ical system. Cord colors, the relative placement of cords, knot types,
and the relative placement of the knots, are all a part of the particular
symbolic statement on each quipu.
Very often, because of their historical association in Western

culture, writing and literacy are considered essential for the expression
of mathematical ideas. And again because of its Western occurrence,
discussions of writing have, until quite recently, focused solely on
writing as the symbolic representation of speech sounds. Mathemati-
cal symbols, and the way they are interrelated and spatially arranged,
stand outside of this limited view of writing. They have, as a result,
received insufficient scrutiny as a mode of communication. Similarly,
diagrams and illustrations that are found interspersed throughout
mathematical writings are often only viewed as subordinate to
words and not as forms that have their own conventions and that
have developed in their own right.
When considering the ideas of traditional peoples, we become all the

more aware that we need to look beyond writing in the sense of
recorded speech sounds. Even where there is writing and literacy, the
interplay of the oral and written varies from culture to culture, as do the
materials available and the use that is made of them.
Let us look again, for example, at the kolam tradition of Tamil Nadu

(Chapter 6). Because they involve transient figures drawn on the
ground, they remind us of the Malekula and Tshokwe traditions, both
of which involve tracings in the sand.
Among the Malekula of Vanuatu, in the South Pacific, there is a

sand-drawing tradition including a stated intent, which is carried out,
of tracing each figure continuously, without backtracking, and ending
where one began. The figures, and the procedures by which they are
drawn, were an important part of what men taught their sons. Related to
beliefs about death and after-death, knowing the figures and tracing
them properly were of special importance. We are fortunate to know
the details of the Malekula drawing procedures for about 100 figures,
and so can see that, individually, the procedures are systematic, but,
more important, we can identify larger, more general systems that
underlie and unite groups of figures.
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The sona tradition of the Tshokwe, in the Angola/Congo (Zaire)
region of Africa, also involves drawings in the sand. It is part of a
story-telling tradition; the figures are drawn while a story is being
told. The story-tellers are men; the traditional stories and figures
convey the values and mores of the culture. As contrasted with the
Malekula and Tamil, the art is restricted to a special few. Among
those Tshokwe figures for which the drawing procedures are known,
several of them are made with a single continuous line. Visually, some
of the figures are remarkably similar to a few of the least ornate single-
line figures of Tamil Nadu. What is more, dot grids, which precede the
drawings, are a significant part of the Tshokwe drawing process. These
similarities are not a sufficient reason to infer that the Tshokwe and
Tamil traditions are related, but it would be most interesting if some
historical linkage were to be found.
In other writings, I have elaborated on the Malekala and Tshokwe

sand-drawing traditions and the mathematical ideas evidenced by them.
(References to these writings are in the section notes.) The brief
mention here cannot fully convey the traditions. Clearly, however, as
compared to the kolam tradition, the cultures are different, the relation-
ship of the traditions to the cultures and their meanings in the cultures
are different, the underlying structures and drawing procedures for the
figures are different, and, with the exception of varying degrees of
concern for continuous closed curves, most of the concomitant math-
ematical ideas are different. None the less, what is shared is an interest
in creating symmetric planar figures that are elaborated well beyond
any practical necessity. And in all of these traditions, the figures and the
procedures used to draw them are considered important knowledge to
be carefully learned and carefully passed on.

2 In our culture, there is a marked difference between the mathema-
tical ideas of those who specialize in thinking about them and

those who do not. This distinction, and the gradations between, also
exist in other cultures. Additionally, it is interesting to observe that the
ideas are differently passed on and learned depending on where they are
situated in a culture.
Among the Borana, for example, although everyone lives under the

Gada system (Chapter 5), it is their historians who can articulate its
cyclic structure and some of its implications. Similarly, specialists,
such as the Maya scribes (Chapter 3) or the Rato Nalo of the Kodi
(Chapter 2), were responsible for the calendars of their groups,
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although the calendars affected everyone. Where the ideas are perva-
sive, such as those that underlie kin relations, social relations, and
notions of time and of space, they are part of the web of language
and culture transmitted to children as they grow and mature. Each of
us, somehow, learns to perceive the world and interpret experience
using the same framework as do the other members of the group in
which we are born and raised. Other ideas, such as those involved in the
figures and procedures of the kolam tradition, or the figures and proce-
dures of the Malekula sand-drawing tradition, are specifically taught by
mothers to daughters or by fathers to sons. While some people may be
more skilled and knowledgeable than others, the tradition and ideas
within it are broadly shared, with no particular group identified as
experts or specialists. Specialties, including, for example, weaving,
carving, or pottery, involve yet other ideas, such as the visualization
and creation of sizes and shapes, and the conception and execution of
patterned decorations. The learning of these often involve apprentice-
ships, but can be as varied as the cultures and the specialties them-
selves.
What particularly attracts our attention, however, is the formal train-

ing received by some specialists in some cultures. We see this mode of
learning as distinctive and as having important ramifications for the
mathematical ideas being learned. What we mean by formal learning is
exemplified by the training of the Marshall Island navigators (Chapter
4) and the Yoruba diviners who specialize in Ifa (Chapter 1). The
training is organized, separated from daily routines, and carried out
by members of a professional group. (We call them professionals,
rather than experts, in part because of this training, and also because
they continue to share their knowledge and interact with each other.)
This mode is in decided contrast to learning that is embedded in
ongoing activity and which depends primarily on observation and
imitation. For both the Yorba diviners and the Marshall Island naviga-
tors, we know that there are master teachers, specially selected
students, and that several students may be taught simultaneously.
What is taught includes general principles, as well as specific proce-
dures. It also includes the construction and interpretation of material
arrays, and there is an abundance of detail that must be committed to
memory. For the divining students, there are periodic oral examinations
and a final examination. Only a fraction of those who begin the lengthy
training program successfully complete it. (We do not know, but would
suspect, that not all succeed who are in training to be navigators.)
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Perhaps the most significant aspect of this formal training is its
separation from the experiential. To convey, while on land, the meeting
of several ocean waves, for example, would require some characteriza-
tion of selected features of the waves. That is, since the waves them-
selves are not present, they have to be replaced by words and/or visual
renderings describing a few features of the waves that have been
extracted as significant. This process of extraction and of dealing
with the hypothetical rather than the real is a crucial part of what
distinguishes the creation and use of abstract systems from other prac-
tices. While, for the navigators and diviners, any mathematical ideas
involved are phrased in terms of navigation or divination, the ideas are
not surrounded by the ambiance or totality of circumstances of an
actual voyage or divination session. Thus, although the ideas may be
in the overall context of navigation or divination, they are decontex-
tualized from the fullness of reality by the formal learning situation,
which selectively creates its own version of that reality.
A third example of this type of formal learning that we have encoun-

tered in our studies of the mathematical ideas of traditional peoples is
the case of the sixteenth-century Inca quipumakers. Here, too, those
who were trained were specially selected and sent from their homes to
be taught in Cuzco, the Inca capital. As result, the logical-numerical
system that was learned was a shared, general system that could be used
for communication and which has general principles that could be
applied in different settings and in different specific instances.
Although three cases of formal learning situations in traditional cultures
are insufficient to generalize about their occurrence or rarity or types of
subject matter, we are led to suspect that this formal mode is particu-
larly conducive to the creation and transmission of substantial systems
of ideas.

3 Striking in the collection of examples presented here is the promi-
nence of cyclic structures. For the Basque, cooperation takes place

through time rather than at a fixed moment, and, to accomplish this,
activities are conceived of as cyclically ordered. For the Borana, events
at different times are linked by their association with named classes and
grades that are made to cycle through time. Continuous closed curves
that are used to draw some kolam are related to the never-ending cycles
of life and never-ending cycles of the seasons. Calendric structures that
reflect astronomical cycles are, perhaps, most familiar to us, but it is the
imposition of arbitrary cycles on time that make the calendars we have
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discussed such distinctive creations of the cultures that conceived them.
For the Jews, specially observing the seventh day in a 7-day cycle is of
paramount importance; for the Maya and Balinese, the significance and
quality of any day is determined by the particular set of gods that
influence that day as a result of the interaction of multiple cycles. In
all of these systems, with the exception of the kolam, there are finite
length cycles of discrete elements. Crucial to the behavior of these
systems are the cycle lengths, which vary considerably, including,
for example, five and seven; ten and six; twenty, eighteen, and thirteen;
and one, two, three, four, …, nine, and ten.
Given the ubiquity of cycles in structures created and imposed by

human beings, it is not surprising that cyclic structures have been well
studied by our mathematicians and that arithmetic and algebraic rules
for dealing with these structures are available to us. Others may have
used different approaches, but they did, none the less, deal with cycles
and with cycles combined with other cycles.

4 Sources of information about the mathematical ideas of traditional
peoples have been scant and not of the sort mathematicians or

historians of mathematics are used to. Until recently, over 90% of tradi-
tional cultures had no writing as we generally use the term. They, there-
fore, left no documents about their ideas expressed in their own words.
To learn about their past ideas and traditions, we often must depend on
information that can be extracted from artifacts or from reports of obser-
vations left by others. Too often, these others did not fully understand
what they saw and were not especially concerned with mathematical
ideas. Not atypical are the early report of sikidy in Madagascar by a
traveler in the 1600s or the first report of theMarshall Islands stick charts
by amissionary in themid-1800s. Until the late 1800s/early 1900s, there
are primarily reports bymissionaries, travelers, sailors, and sea captains.
Then, European ethnologists traveledwidely, amassing details about the
cultures they had heard existed. The lens through which they viewed
these cultureswas, aswemight expect, their ownEuropean culture of the
time, with all of its assumptions and prejudices. Other than, perhaps,
listing some number words, mathematical ideas were unanticipated,
unsought, and generally overlooked. However, what there is can be
very useful, because contained therein are lots of details, including
drawings and photographs, which can be reviewed from a mathematical
perspective. Many artifacts that are now in museums were collected as
part of these turn-of-the-century expeditions.
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But, as we noted in the introduction, during the past 80 years, much
has been learned about culture, about language, and about cognitive
processes. Not only can these new understandings be brought to bear on
earlier data, but later studies by ethnologists, linguists, and cognitive
scientists, such as many of the studies done after 1950 or 1960, are
already framed by these twentieth-century theories and sensibilities.
Most of these later studies include more focused examinations or re-
examinations of ideas and traditions that continue. They also include an
appreciation of the intellectual capacities and knowledge of traditional
peoples, as evidenced by the emergence of such fields as ethnobotony,
ethnoastronomy, or ethnoichthyology. In general, these fields focus on
a culture’s conceptualizations, perceptions, beliefs, and activities
related to plants, celestial bodies, or fish, respectively. But, in part,
because of the entrenched view that mathematical ideas are culture-
free or culture-neutral, it was not until even more recently that math-
ematical ideas were also studied in this way. Among these recent
sources are some particularly fruitful studies due to scholars in such
fields as archeology, ethnology, linguistics, and culture history, who
have become cognizant of the need to pursue mathematical ideas, and
do so using their expertise and their methods.
One example of a recent investigation by an anthropologist is a study

done among contemporary Quechua-speaking people of the Andes.
The study focuses on the conceptualization, use and meaning of
numbers in their culture. What emerges is, in the words of the inves-
tigator, ‘‘a unique ontology of numbers and philosophy of arithmetic...’’
that is new to us and stands in decided contrast to the view of numbers
put forth by some Western philosophers of mathematics. For mathe-
maticians, however, this is not the first time that counting and numbers
in other cultures have been discussed or contrasted with the ideas of
Western philosophers. But this extended study in itself substantially
challenges the idea that the conception of numbers is culture-free or
culture-neutral. The study also underscores that the use of numbers is
evidenced in different contexts in different cultures. A significant part
of the study discusses numbers and counting in the context of weaving,
an activity which is of central importance in Andean culture. In this
instance, as in so many others, the author and his collaborator’s knowl-
edge of the language play a crucial role, since it is the language that
carries the ideas. Too often when relying on reports of outsiders not
specifically interested in mathematical ideas, or not sufficiently
acquainted with the language, translation has already unintentionally
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served to filter or recast the ideas so that they are overly simplified or
sound more or less like our own.
It is important, however, to recognize that the beliefs discussed in the

study are those of the Quechua-speaking population at large, rather than
the ideas of some few specialized professionals in their culture. No
doubt, a careful study in our own culture would similarly show that
the concepts of the population at large diverge considerably from those
of our philosophers. In fact, numerous recent writings by professional
working mathematicians question whether the philosophers even speak
for them. Thus, as we broaden our vision to include other cultures, we
must also keep a mind that in any culture, whether our own or that of
others, there are some ideas that pervade the culture, some ideas that are
particular to specialized groups within the culture, and some ideas that
are special to specific individuals. Acknowledgment and understanding
of their differences, similarities, and how they fit together could create a
more nuanced history of the mathematical ideas in any culture, includ-
ing our own.
An idea that has attracted much interest and led to a variety of

different studies, large and small, is the creation and use of repeated
designs arranged along strips or in two-dimensional arrays. This formal
mode of spatial decoration has been found to be unusually common in
cultures spread through space and time. In addition, independent of
concern for the ideas of other cultures, there has been mathematical
interest in the use of symmetry groups for the analysis of such strip and
surface patterns. These two streams of interest merged as long ago as
the 1940s when, for a Ph.D. thesis, formal mathematical analysis was
applied to Moorish decorations in the Alhambra, and, just a short while
later, using Pueblo pottery as an example, an archeologist advocated
this mode of analysis for pottery classification. Now, particularly in
educational settings, this mode of analysis has become even more wide-
spread, as it enables the inclusion of materials from other cultures.
Through the use of collections of realistic patterns, there can be seen
different expressions of the same mathematical abstraction as they arise
in meaningful human settings. The collections of patterns clearly show
that despite differences in style, context, meaning, and materials, the
same formal spatial orderings occur in many different cultures.
Although there is no implication (or there should not be) that our
mode of analysis or the resulting categorization into symmetry classes
expresses the ideas of the patterns’ creators, several studies of small
collections focus on whether or not various cultural groups used all the
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symmetry classes that were possible. Other studies of larger collections
focus on which symmetry classes were most prevalent in the patterns
used by a people.
An important complement to this analytic approach is a recent field

study of the rafia-cloth design categories utilized by the Bakuba who
live in the Congo (Zaire) region of Africa. Mathematical analysis of the
Bakuba material itself first appeared about 30 years ago in the Journal
of Geometry, and then again soon thereafter in the seminal Africa
Counts. The recent Bakuba study is by an archeologist who had in
the past collaborated with a mathematician on symmetry studies. The
goal of the field study was to find out what kinds of properties or
features contemporary Bakuba actually use to define a design category.
Here, again, language is crucial as naming and the visual identification
of what is named are intimately linked with each other. As we look at
the numerous designs and read about how the Bakuba see them, we are
again made aware that the shapes and juxtapositions we see as basic—
and as distinguishing some designs from others—are neither universal
nor objective. They are part of our perceptual framework and not
necessarily what is seen by others. Similarly, some of the distinguishing
features that the Bakuba clearly see are not necessarily at all clear to us.
As we would expect, the features that we use to define the symmetry
classes of the two-dimensional arrays with patterned repetition are not
the features that concern the Bakuba. Nevertheless, the Bakuba samples
analyzed show consistently greater use of ten of the seventeen possible
symmetry classes.
Another recent study, quite different in kind, is about the previous

septuagesimal system of units of the Basque. The author, whose
special area is Basque studies and ethnoastronomy, argues that the
Basque metrological tradition depended on a cognitive framework that
differed considerably from that commonly associated with Western
mathematics. The framework was an integral part of the Basque
cosmovision as expressed in folk tales and ritual performances, as
well as in celestially encoded star figures. The origin of the septua-
gesimal system is still unknown as some aspects of the Basque system
are also found among their former Celtic-speaking neighbors and even
among the ancient Greeks. For the Basque, the ramifications of the
septuagesimal system extend from the placement, some 2000 years
ago, of stone octagons to identify pasturage, to a calculating device
used in navigation and map plotting in the Middle Ages. For us, the
study is particularly significant as it makes us realize that even the
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histories of European science and European mathematics are more
culturally variegated than we generally think of them, extending
beyond just differences in practices to differences in the conceptuali-
zation of space and time.
Recognition that there exist, in traditional cultures, mathematical

ideas more interesting and substantial than was previously believed
has been an important first step in these and other recent studies. As
this recognition grows and spreads, we anticipate additional studies.
And, just as we noted that many people now live under more than one
calendar, a growing number of people are living with more than one
cultural tradition, namely, the culture in which they were born and
raised, and the culture whose idea dominated their formal education.
By retaining and valuing both traditions, they will, we believe, make
special contributions as they raise new questions, seek new answers,
and develop new perspectives. We already see in the discussions of the
Gada system (Chapter 5) and of the kolam tradition (Chapter 6) signif-
icant contributions by scholars who combined their own cultural under-
standings with what was learned in academic settings dominated by
Western ideologies.

5 For all of us, on whatever level of learning, knowledge of the ideas
of others can enlarge our view of what is mathematical and, in

particular, add a more humanistic and global perspective to the history
of mathematics. This enlarged view, in which mathematical ideas are
seen to play a vital role in diverse human endeavors, provides us with a
richer and fuller picture of mathematics and its past.
Twenty-first century mainstream mathematics is reaching people of

more and more diverse cultures as the teaching of it continues to spread
across national and continental boundaries, as people move from one
country or region to another, and as several cultures are represented in
the backgrounds of more individuals. An enlarged view of the past can
help in furthering the realization that people of different cultural tradi-
tions will enrich mathematics itself by bringing to it different perspec-
tives and different ways of perceiving and categorizing the world.

Notes

1. Rievel Netz’s The Shaping of Deduction in Greek Mathematics: A Study in Cogni-
tive History, Cambridge University Press, Cambridge, 1999, is highly recom-
mended. The book is exceptional in that it discusses the role and use of diagrams
in Greek writings, focusing on the period from the middle of the fifth century BCE
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to the middle of the fourth century CE. Diagrams and text are seen as interdepen-
dent, with diagrams one of the two main tools that shaped the Greek method of
deduction. The significance of cultural context is emphasized throughout. The style
of Greek mathematics is viewed as resulting from their combination of writing with
their tradition of orality.

Also highly recommended is R. Narasimhan’s ‘‘Literacy: Its characterization and
implications,’’ pp. 177–197 in Literacy and Orality, David R. Olson and Nancy
Torrance, eds., Cambridge University Press, Cambridge, 1991. In discussing
literacy, he includes the perspective of the Indian tradition as contrasted with solely
using the Western tradition. He argues that literacy must be viewed more broadly
than just alphabetic literacy and notes the insufficiency of writing in the engineer-
ing/engineered worlds. The article is particularly important because it extends
consideration to diverse forms of symbolic notation. It also touches on abstraction,
the construction of formal models, and two-dimensional spatial representations.
(Also see Narasimhan’s article ‘‘The oral-literate dimension in Indian culture’’
cited in the Section 1 notes of Chapter 6.)

Inca quipus are discussed in detail in Marcia Ascher and Robert Ascher, Mathe-
matics of the Incas: Code of the Quipu, Dover Publications, New York, 1997. Also,
my article ‘‘Reading quipus: Labels, structure, and format,’’ in Narrative Threads:
Explorations of Narrativity in Andean Khipus, Jeffrey Quilter and Gary Urton, eds.,
University of Texas Press, in press, focuses on their logical-numerical system as a
symbolic system that does not encode speech sounds. Quipus are placed within a
broadened conception of writing in the article ‘‘Inca writing’’ by Robert Ascher, in
the same volume.

The Malekula and Tshokwe sand-drawing traditions are discussed in Chapter
2, ‘‘Tracing graphs in the sand,’’ in my book, Ethnomathematics, which is cited
in full in the notes to Section 5 of Chapter 6. More detailed discussions of them,
also by me, are in ‘‘Graphs in cultures: A study in ethnomathematics,’’ Historia
Mathematica, 15 (1988) 201–207 (Malekula), and ‘‘Graphs in cultures (II): A
study in ethnomathematics,’’ Archive for the History of Exact Sciences, 39 (1988)
75–95 (Tshokwe). Paulus Gerdes has written extensively about the Tshokwe
tradition, primarily suggesting classroom activities inspired by the material.
See, for example, Chapter 4, ‘‘The ‘sona’ sand drawing tradition and possibilities
for its educational use,’’ in his Geometry from Africa: Mathematical and Educa-
tional Explorations, Mathematical Association of America, Washington, DC,
1999. Of his writings, the most informative about the tradition itself is Sona
Geometry: Reflections on the Tradition of Sand Drawings in Africa South of the
Equator, vol. 1, Instituto Superior Pedagógico, Mozambique, 1994 (translated
into English by Arthur B. Powell of Rutgers University, Newark, NJ).

2. The training of the Yoruba diviners is discussed in detail, as a case in point, in
Festus Niyi Akinnaso’s ‘‘Schooling, language, and knowledge in literate and nonli-
terate societies,’’ pp. 339–385 in Cultures of Scholarship, S.C. Humphreys, ed.,
University of Michigan Press, Ann Arbor, MI, 1997. The focus of the article,
however, is formalized learning. In it, Akinnaso challenges the view that formalized
learning is necessarily associated with the transmission of literate knowledge, as
contrasted with socially embedded learning in nonliterate societies. This insightful
article contains numerous references and is especially recommended to those
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concerned with educational practices and with bridging the gap between practical
knowledge and specialized knowledge.
Chapter 4 ofMathematics of the Incas, fully cited in the Section 1 notes above, is

devoted to the quipumaker. It also includes references to the education of Sumerian
and Egyptian scribes. For another detailed discussion of the training and role of the
Old Babylonian scribes, see ‘‘Mathematics and early state formation, or the Janus
face of early Mesopotamian mathematics: Bureaucratic tool and expression of
scribal professional autonomy,’’ pp. 45–87 in In Measure, Number, and Weight:
Studies in Mathematics and Culture, Jens Høyrup, State University of New York
Press, Albany, NY, 1994, in particular pp. 64–66 and 82–84.

4. The study done among contemporary Quechua-speaking people in the Andes is
discussed in chapters 1–5 of The Social Life of Numbers: A Quechua Ontology of
Numbers and Philosophy of Arithmetic, Gary Urton with the collaboration of Primi-
tivo Nina Llanos, University of Texas Press, Austin, TX, 1997. (As the author
himself notes, chapters 6 and 7, which attempt to connect these ideas to pre-Hispa-
nic and colonial Andean societies, are less successful.) The phrase quoted from
Urton is on page 3 in his book. To place this study in a broader context, see, for
example, the chapter devoted to number words and number symbols in my book
Ethnomathematics.
Symmetric strip decorations are the subject of Chapter 6 in Ethnomathematics. In

it, I discuss the mathematical analysis of one- and two-color strips, as well as
examples from Inca pottery and carved wooden Maori rafters. Numerous references
are contained in the notes to that chapter, including references to the early work by
crystallographers and mathematicians, the 1944 Ph.D. thesis, and the 1948 book by
the archeologist Anna O. Shepard.
Examples of recent collections by mathematics educators are The Algebra of the

Weaving Patterns, Gong Music and Kinship System of the Kankana-ey of Moun-
tain Province, Faculty of the Discipline of Mathematics, University of the Philip-
pines, College Baguio, 1996; ‘‘Designs and patterns,’’ section 8.4 (pp. 164–179) in
Fijian Perspectives in Mathematics Education, Salanieta Leiloma Bakalevu, Ph.D.
thesis, University of Waikato, Hamilton, New Zealand, 1998; ‘‘Symmetry patterns
of the Wisconsin woodland Indians,’’ Kim Nishimoto and Bernadette Berken,
International Study Group on Ethnomathematics Newsletter, vol. 12, no. 1,
November 1996, pp. 6–8; and Sipatsi: Technology, Art and Geometry in Inham-
bane, Paulus Gerdes and Gildo Bulafo, Universidade Pedagógica, Maputo,
Mozambique, 1994.
Analysis of the Bakuba patterns appeared in ‘‘The geometry of African art I.

Bakuba art,’’ The Journal of Geometry, 1 (1971) 169–181, by Donald W. Crowe and
then in a section on symmetry analysis (pp. 190–196) written by him in Claudia
Zaslavsky’s Africa Counts, Prindle, Weber, and Schmidt, Boston, MA, 1974. (A
twenty-fifth anniversary third edition of Africa Counts is available from Lawrence
Hill Books, Chicago, IL.) The recent Bakuba study is Style, Classification and
Ethnicity: Design Categories on Bakuba Raffia Cloth, Dorothy K. Washburn,
Transactions of the American Philosophical Society, vol. 80, part 3, The American
Philosophical Society, Philadelphia, PA, 1990. (Dorothy K. Washburn and Donald
W. Crowe collaborated on Symmetries of Culture: Theory and Practice of Plane
Pattern Analysis. University of Washington Press, Seattle, WA, 1988.)
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The Basque study is discussed in ‘‘An essay on European ethnomathematics: The
coordinates of the septuagesimal cognitive framework in the Atlantic Facade,’’
Rosyln M. Frank, 78 pp., ms., May 1995. Part of this, in revised form, has appeared
as ‘‘An essay on European ethnomathematics: The Basque septuagesimal system.
Part I,’’ pp. 119–142 in Actes de la Vème Conférence Annuelle de la SEAC, Arnold
Lebeuf and Mariusz S. Ziólkowski, eds., Départment d’Anthropologie Historique,
Institut d’Archéologie de l’Université de Varsovie–Musée Maritime Central,
Warsaw, 1999. The stone octagons are discussed in ‘‘The geometry of pastoral
stone octagons: The Basque sarobe, Rosyln M. Frank and Jon D. Patrick, pp. 77–
91 in Archeoastronomy in the 1990s, Clive L.N. Ruggles, ed., Loughborough Group
D Publications, London, 1993.
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